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::: During the year of 1986-1987, we have developed the vortex element
method and the transport element method, for the numerical simulation of the

== NavierrStokes equations and the energy and species conservation equations, |
I respectively. These methods are based on a Lagrangian, grid-free, time- ]
£ accurate simulation of the governing equations at high Reynolds and Peclet j
s numbers, without resorting to turbulence modelling. Finitektrate chemical J
i reactions, finite compressibility and finite heat release rates are also

K considered in the formulations of the numerical schemes. To validate these l

methods, we are obtaining solutions for reacting shear layers, both ¢
. homogeneous and heterogeneous, under various idealizations, and comparing -
R\ the numerical results with experimental data. The solutiops are also
U

b analyzed to investigate the mechanisms of turbulence*combustion
0 interactions. .. — P .
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i OBJECTIVES

oy The goal of this research program is to develop, test and apply methods
of numerical simulation, based on vortex dynamics, to reacting flows with

et finite chemical reaction and heat release rates. 1In particular:

;%0 I. The development of accurate and efficient numerical methods which

, can be utilized in the simulation of the time-dependent, multi-

N dimensional Navier-Stokes equations at high Reynolds number, and
I' H
Rﬁ can be extended to solve the energy and species conservation
R
., equations in cases where the chemical reaction rates are finite and
§$ fast and when the associated heat release is large and hence
4
U
ﬁ& dynamically important.
vh
!’. s ’ 3 . .
i? II. The application of these numerical algorithms to turbulent reacting
53 shear layers, for both homogeneous and heterogeneous reactants, to
)
\}
i&: validate the numerical methods against experimental results, and to
‘.‘
ol study the underlying mechanisms of entrainment and mixing and how
et they affect the rates of product formation.
W
H‘
el III. The investigation of the mechanisms of turbulence-combustion
o
§$ interactions based on rigorous fundamental models, and how these
ag interactions can be manipulated to provide more efficient burning.
()
)
iy In particular, the effect of turbulent fluctuations and flow
({ stretch on the rate of chemical reaction, flame stability and
. extinction.
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s Three graduate students have completed their master’s theses under the

sponsorship of this program. Their names and thesis titles are listed at

y the end of the report. Currently, five graduate students are continuing
B
Jg their doctorate work under the partial of full support of this project.

Their names, listed according to seniority, are

ﬁ? (1) Ghassem Heidarinejad
‘:‘E (2) Omar Knio

‘ (3) Habib Najm

%% (4) Anantha Krishnan

sg (5) Luis-Fillipe Martins
Ko EQUIPMENT

" To meet the computational needs of this work, we have built the

¢ following system around a VAX 11,/750:

? (1) An array processor MAP-6420.

e‘ (2) Two MicroVAX II workstations, and a MicroVAX cpu.

‘ (3) A local area network with communication interface to a supercomputer. ;
? (4) Graphics terminals, a laser printer, and a color film recorder. |
%‘ The system has been hard-wired into the Campus-wide network to allow

easier access to other computational facilities available within and outside

N M.I.T., especially the John von Neumann supercomputer center at Princeton.
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WORK STATUS
In the following, the vortex and transport element methods are briefly
described and the results of their preliminary applications are discussed.

THE VORTEX ELEMENT METHOD

In this method, Lagrangian particles are treated as finite vortex
elements that accurately discretize the vorticity field. We have shown that
the accuracy of the method is governed by: the shape function of individual
elements, the core radius and the distance between neighboring elements. To
preserve the accuracy as the flow develops strong strain fields, particle
distribution must change to accommodate distortions of the vorticity by the
strain field, leading to a natural growth in the number of vortex elements
with time as the flow develops stronger gradients, or fine scales, via
stretch. We are implementing a new algorithm to limit the number of
interactions between N vortex elements to O(N), instead of O(Nz) in direct
interactions, using multipole expansion of the contribution of groups of
elements.

In Appendix I, the scheme is described in detail, and results for the
evolution of a temporal shear layer are analyzed. A temporal shear layer
model allows one to limit the computations to a fixed number of large eddies
as they evolve from a perturbation to a coherent vortex structure. The
accuracy of the computations reveals the detail of the inner structure of
the large eddies and the development of secondary instabilities which force
the core into several rotations, as well as the severe strain which material
line are exposed to within the eddy core. The application of the scheme to
a spatially developing shear layer is presented in Appendix II. The
improvement of the accuracy over schemes which wutilize a fixed number of

elements can be realized by comparing these results with results shown in
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Appendix III. In the vortex element method, the number of elements grows as
the strain field develops, letting one capture the areas where the strain
field, and thus the large scalar gradients develop.

Extension of the vortex element method to three dimensional flow
simulation has been accomplished by utilizing spherical vortex elements that
discretize a three dimensional vorticity field and undergo stretching along
the direction of the vorticity vector, as described in Appendix IV. The
application of the scheme to study the evolution of azimuthal instabilities
on vortex rings has shown that these structures are unstable to a particular
wave number, causing the ring to develop into a star-like structure with
lobes of vorticity extending in the radial direction of the ring. Results
also show that these azimuthal instabilities can excite higher frequency
modes by vortex stretching, generating a turbulent cascade of the energy
into higher wave numbers. Results of the simulation compared favorably with
experimental data. The computations are currently being extended to
simulate the evolution of streamwise vorticity in a planar shear layer and a
turbulent jet.

THE TRANSPORT ELEMENT METHOD

To achieve an efficient, self-adaptive Lagrangian algorithm for the
solution of the energy and species conservation equations, scalar gradients
are discretized using core functions similar to those used in the vortex
element method. However, contrary to the scalar concentration, gradients
are not conserved along a particle path since stretching and tilting
material layers enhance the gradients and change their direction. This
effect is implemented by changing the strength of the transport elements

according the variations of a small material line that coincides with the

center of the transport element. Adding a chemical source term requires
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changing the local gradients with time. This amounts to transporting g
:: several scalar gradients with each element and integrating the source term l
$ within each element to compute its instantaneous strength according to a
$ given chemical kinetics scheme. At low Mach number, volumetric expansion
égn due to heat release produces an irrotational velocity field, and generates
f“ non-baroclinic vorticity due to the interaction between the density and
EE pressure gradients.
ES In Appendices I and II, the mathematical formulations of the transport
S' element method are described for a non reacting flow and a for reacting
iﬁ flow, respectively. 1In Appendix I, the method has been applied to compute
g’ the temperature profiles in an initially-thermally stratified temporal
5: mixing layer, showing how entrainment leads to intermittency within the eddy
fi core and to mixing enhancement by generating large gradients as the material
Eé layers stretch. Statistics of mixing of a passive scalar in a spatial shear
:? layer have been compared with experimental results in Appendix III, where
‘i only a simplified version of the scheme, the scalar element method, was
;: used. The comparison is favorable, considering the fact that no turbulence
fﬁ modeling was implemented to obtain these results. The accuracy of the
a cocmputations falls off around the boundaries of the layer due to the small
31 number of scalar elements which were used in this simulation. The transport
%: element method avoids this problem by transporting the gradients, instead of
.‘ the scalar, and is expected to yield better predictions for the mixing
‘§ statistics. This is currently being tested.
;ﬁ Results for the development of an eddy in a reacting shear layer are
E; presented in Appendix II. Initially, reactants and products are on the top
Eg and bottom sides, respectively. As the eddy grows by entraining more
i: reactants, the flame is stretched and wrinkled, leading to a rise in the
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rate of product formation over that of the corresponding laminar flame.
The ratio of the total amount of products formed in the two cases scales
with the square of the flame length in the turbulent case.

To validate these results, computations will be performed for a
spatially developing, reacting mixing layer, and statistical information
derived from the simulations will be compared with experimental
measurements.

TURBULENCE-COMBUSTION INTERACTIONS

Slowing down the rate of chemical reaction in the reacting mixing layer
leads to local and temporary extinction, as shown in Appendix II. As the
Damkohler number of the reacting mixture is lowered, the rate of product
formation is decreased. Moreover, the reaction is observed to cease
completely for short periods of time. The lower the Damkohler number, the
earlier the reaction is temporarily extinct. Local extinction is observed
around areas of largest strain field. The extinction occurs temporarily
since on the other side of the 1layer, products at high temperature heat up
the reactants and resume the reaction after a short pause. To explain why
extinction is correlated with the strain field, we inspected plots of the
temperature, strain rate and expansion rate along one of the layers within
the flame zone. It was found that a negative correlation existed between
the strain rate and expansion rate, and between the temperature and strain
rate. Thus, it was concluded that as the strain lowered the temperature by
enhancing the diffusion flux via strong gradients, it led to flame
extinction. The temperature drop was due to the fact that chemistry was

slow so that it could not make up for the increase in the diffusion fluxes

with stretch.
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Other parameters, e.g., the Peclet number, Lewis number and the
activation energy, can affect the interaction between turbulence and
combustion, Work 1is underway to investigate their influence on the

mechanism described above.

P

’ : v, LR , : o\
L e IS MO W O SUOOOLEEMIM P bt B N Pt MM S IR EAMIANTIM TN I A AP
D T e O AU TR R AR O R G RN RNV



bl ww - TV 7 I T IR IR TOT T TEN TN Farva o _’-“‘_1

THESES PRODUCED DURING 1984-1987:

(1) Ng, Kenneth K., "Vortex Simulation of a Confined and Perturbed Shear
Layer," M. Sc., January 1986.

(2) Gagnon, Yves, "Numerical Investigation of Recirculating Flow at
Moderate Reynolds Numbers Using Vortex Methods," M. Sc., January 1986.

(3) Knio, Omar, "Low Mach Number Simulation of Combustion in Closed
Chambers," M. Sc., January 1986.

PAPERS PUBLISHED DURING 1984-1987:

(1) Ghoniem, A.F. and Sethian, J.A., "Dynamics of recirculation in a
turbulent flow; A computational investigation," AIAA-85-0146. The AIAA
23rd Aerospace Sciences Meeting, Reno, Nevada, 198S5.

(2) Ghoniem, A.F., and Sethian, J.A., "Effect of Reynolds number on the
structure of recirculating flows," AIAA Journal, 25, pp. 168-171, 1987.

(3) Ghoniem, A.F., "Analysis of flame deformation in a turbulent field;
effect of Reynolds number on the burning rate," AIAA-85-0140. The AIAA
23rd Aerospace Sciences Meeting, Reno, Nevada, 198S5.

(4) Ghoniem, A.F., "Effect of large scale structures on turbulent flame
propagation,” Combust. Flame, 64, pp. 321-336, 1986.

(5) Ghoniem, A.F., "Computational methods in turbulent reacting flows,"
Invited three lecture series at The Seventh AMS-SIAM Summer Seminar in
Applied Mathematics on Combustion and Chemical Reactors, Cornel
University, July 1985. Lectures in Applied Mathematics, 24, pp. 199-
265, 1986.

(6) Ng, K.K., and Ghoniem, A.F., "Numerical simulation of a confined shear
layer,"” The 10th International Colloquium on the Dynamics of Explosions
and Reactive Systems, August 4-9, 1985, Berkeley, CA. amics of
Reactive Systems, Part II, ed. by Bowen et al., pp. 18-49, lggg.

(7) Ghoniem, A.F. and Gagnon, Y., "Numerical investigation of recirculating
flow at moderate Reynolds numbers" AIAA-86-0370. The AIAA 24th
Aerospace Sciences Meeting, Reno, Nevada, January 1986.

(8) Ghoniem, A.F., and Gagnon, Y. "Vortex simulation of laminar
recirculating flow," J. Comput. Phys., 68, pp. 346-377, 1987.

(9) Ghoniem, A.F.,and Ng, K.K. "Effect of harmonic modulation on rates of
entrainment in a confined shear layer," AIAA-86-0056. The AIAA 24th
Aerospace Sciences Meeting, Reno, Nevada, January 1986.

(10) Ghoniem, A.F., and Ng, K.K., "Numerical study of a forced shear layer,"

*.". Phys. Fluids, 30, pp. 706-721, 1987.
il (11) Ghoniem, A.F., and Knio, O.M., "Numerical Simulation of Flame

: Propagation in Constant Volume Chambers," Presented at The 2ist

.'A"l “‘l‘ 'l’; l’ 0' A".i' ‘u'.“‘.‘ BN )‘ f “.. ': I "o |'. ~ Dy ‘.b..’. b ‘..ll o ln"' ‘..u "? ‘ -'b .’i‘ 'o“'a‘!’f 0:':“‘2 e .‘ 0.'. Al '.. . ."\“.' '.. .. . ' ‘I'



A\
Z§§:§: .
'y ()
10
.
:Sﬁ Symposium (International) on Combustion, Munich, West Germany, August
oﬁb. 1986. Proceedings to be published.
L)
RN
* (13) Sethian, J.A., and Ghoniem, A.F., "validation of the vortex method,"
w4 accepted for publication at J. Comput. Phys., 1987,
N'l
k?‘ (14) Ghoniem, A.F., Knio, O.M., and Aly, H.F., "Three dimensional vortex
i simulation with application to axisymmetric shear layers," AIAA-87-
a?i 0379, the 25th Aerospace Sciences Meeting, Reno, Nevada, January 1987,
3
% W (15) Givi, P. and Ghoniem, A.F., "Vortex Scalar-element calculations of a
wh diffusion flame," for AIAA-87-0225, the 25th Aerospace Sciences
q ; Meeting, Reno, Nevada, January 1987, submitted for publication at the
e AIAA Journal.
gt
O
f" (16) Ghoniem, A.F., Heidarinejad, G., and Krishnan, A. "Numerical simulation
. of a thermally stratified shear layer using the vortex element method,"
i submitted for publication, J. Comput. Phys. (1987).
0
5”? (17) Ghoniem, A.F., "Vortex methods for non-reacting and reacting flows,"
KL Workshop on Vortex Methods, University of California, Los Angeles, May
R 20-22, 1987, Proceedings to appear, January 1988.
@
o (18) Ghoniem, A.F., "Turbulence-Combustion interactions 1in a reacting shear
va. layer," United States-France Joint Workshop on Turbulent Reactive
‘?é Flows, July 6-10, 1987, Rouen, France, Proceedings to appear, January
o 1988.
;Sa. .
‘ol
S (19) Ghoniem, A.F., Heidarinejad, G., and Krishnan, A., "Numerical
“gq simulation of a reacting shear layer wusing the transport element
:‘5 method," The 23rd AIAA/SAE/ASME/ASEE Joint Propulsion Meeting, La
*& Jolla, California, June 29-July 1, 1987, AIAA-87-1718.
X
W
;ﬁo (20) Najm, H. and Ghoniem, A.F., "Vortex simulation of the convective
i instability in a dump," The 23rd AIAA/SAE/ASME/ASEE Joint Propulsion
= Meeting, La Jolla, California, June 29-July 1, 1987, ATAA-87-1874.
‘.i .'Q
.:':' PRESENTATIONS DURING 1984-1987:
1Y 3
;ff 1. "Development and Applications of Vortex Methods: Aerodynamics and
4% Combustion," NASA Lewis Research Center, Cleveland, Chio, June 1984.
[
o 2. "Simulation of a Turbulent Flow in a Model Combustor," 1984 Technical
e Meeting, Eastern Section of the Combustion Institute, Clearwater Beach,
'; FA, December 1984.
o~ 3. "Flame propagation and stability in engine chambers," Department of
b Energy sponsored program on "Lean Engine Efficiency," Ford Motor
W Company, May 1985.
LB
ﬁ%‘ 4, "Numerical solution of a confined shear layer using vortex methods,"
:ﬁh The International Symposium on Computational Fluid Dynamics, Tokyo,
W Japan, September 1985.

Rtk DEOROB OO DOV S R A SR A 08, 4y T
QGO0 :‘»‘3'0:"‘;‘1 .':‘-':‘“‘4‘./1 K !t".b"‘.!ed’.‘tO"’"’l.,‘e’f‘a".‘é’a‘l“i'e‘t‘:fh ! A A

¢ : -
1,80, ( 4 0 9LW.00
.“.?l'.?lf,!d..:dl..l'.q:l’;r l"!,_r .}g’l 4'(:.;l..tl’a:i!g‘ltl:i.".l‘h !‘. e



T THFTATTIEIER T TPw L TH T 1Te THhe 1T e | e L T T T8 \Reuay LW 7w e e

’ ' 11

5. "Vortex Simulation of Turbulent Reacting Flow," AFSOR/ONR Contractors
Meeting on Turbulent Combustion, July 1985.

6. Ng, K. K. and Ghoniem, A. F., "Harmonic modulation of a confined shear
layer," 1985 Technical Meeting of the Eastern Section of the
Combustion Institute, Philadelphia, PA, November 1985.

7. Ghoniem, A. F. and Ng, K. K. "Numerical solution of a confined shear
layer using vortex methods," The International Symposium on

Computational Fluid Dynamics, Tokyo, Japan, September 1985.

8. "Application of Computational Methods in Turbulent Reacting Flow,"
University of North Carolina, October 1985.

8. "Vortex Simulation of Reacting Shear Flows," Army Research Office,
Durham, North Carolina, October 1985.

9. The Pennsylvania State University, "Vortex Simulation of Reacting Shear
Flow," November 1985,

10. Princeton University, "Vortex Simulation of Reacting Shear Flow,"
December 1985.

11. University of California, Berkeley, "Computing Unsteady Flow Using
Vortex Methods," Janurary 1986.

12. Department of Energy Meeting on Homogeneous Charge Engines, University
of California, Berkeley, April 1986.

13, Fourth Army Conference on Applied Mathematics and Computing, Cornell
University, "Computing Unsteady Reacting Flow Using Vortex Methods,"
May 1986.

14. SIAM National Meeting, Boston, MA, July 1986, "Computational Methods in
Combustion Theory".

15. Workshop on Computational Fluid Dynamics and Turbulent Reacting Flows,
Institute of Mathematics and its Application, University of Minnesota,
September 1986. "Vortex Simulation of Turbulent Reacting Flow".

16. Ghoniem, A. F. and Najm, H., "Numerical study of combustion instability
in a dump configuration,” 1986 Fall Technical Meeting, Combustion
Institute, December 15-~17, 1986, San Juan, Puerto Rico.

18. Flow Research Laboratories, Kent, WA, Vortex Simulation of Turbulent ;
Shear Flow, June 1986. |

19. SI1AaM 1986 National Meeting, Boston, MA, Computational Methods in
Combustion Theory, July 1986.

20. Workshop on Computational Fluid Dynamics and Turbulent Reacting Flows,
Institute for Mathematics and its Applications, University of
Minnesota, Vortex Methods in Turbulent Reacting Flows, September 1986.




e ‘ ’ 12

s Ay
oy
;“ 21. General Motors Research Laboratory, Warren, MI, Application of Vortex
a8 Method to Turbulent Reacting Flow, November 1986,
N/
K
A 22. University of Notre Dame, G.E. Scholar Lectureship, Vortex Simulation
! of Turbulent Reacting Flow, November 1986.
w
?\5 23. National Bureau of Standards, Gainsburg, MD, Vortex Simulation of
\J: Turbulent Reacting Flow, February 1987.
T
J*- 24. SIAM Meeting on Numerical Combustion, San Francisco, CA, Lagrangian
V) Gradient Methods in Turbulent Reacting Flow, March 1987.
&f 25. University of Maryland, Vortex simulation of turbulent reacting flow,
April 1987.
ot
ﬁa 26. Workshop on Vortex Methods, Los Angeles, CA, Vortex Simulation of
s Turbulent Shear Flows, May 1987.
'f:‘ 27. United States-France Joint Workshop on Turbulent Reactive Flow, Rouen,
;:j France, Turbulence-Combustion Interactions 1in a Reacting Shear Layer,
#&- July 1987.
(.
K
483' 28. Peugeot Motor Company, Paris, France, Recent Progress of Numerical
@ Simulation of Turbulent Reacting Flows, July 1987.
* -4
e
v:' INTERACTIONS DURING 1984-1987
Lo 1. Participated in DOD meeting on Topical Review on Mechanics, Aeronautics
{ and Propulsion, National Academy of Sciences, February 5-6, 1985.
ﬁff 2. NASA Lewis Research Center, Combustion Fundamentals (Dr. C. John Marek)
o and Computational Fluid Mechanics (Dr. John Adamczyk), June 1984.
3
X 3. California Institute of Technology, Combustion Laboratory of Prof. E.
%) Zukoski, to explore their experimental work on pressure oscillations in
0 dump combustors and couple to our numerical studies, July 198S5.
"
'*Q- 4. Army Research Office, Mathematical Sciences Division (Dr. J. Chandra)
R (to visit the Laboratory on October 4, 1985, and explore avenues for
e interactions).
o 5. Pennsylvania State University, Combustion Laboratory of Dr. Dominic
N Santavicca, to couple his experimental investigation on the effect of
& turbulence on flame propagation (supported by AFOSR) to our numerical
o simulation activities (to visit the Laboratory on November 6th).
s..
ﬁ', 6. Sandia National Laboratory, couple experimental work on flame structure
0. (Dr. R. Green) and engine efficiency (Dr. F. Dyer) with our numerical
& simulation studies.
"
':ﬁ 7. Columbia University, N.Y., Combustion Laboratory of Drs. R. Bill and R.
T Chevery, to couple their experimental work on stability of V-shaped
5
S
I'Jl
‘:;:
lzﬁ
s,
Kat

PR 4

A} TR e e N
«
.

‘-\‘. T \-f‘. -1"5-' r.~'ﬂ:\. o




N ‘ 13

»

A flames and axisymmetric shear layers to our numerical simulations (to
l. visit during this academic year, 1985-1986).

. 8. AFWAL Aeropropulsion Laboratory, Wright-Patterson AFB, OH, Dr. W.M.
' Roquemore, structure of turbulent jet flames.

A

A

. ...._“.

-
¥

ey OQ4 e
o t’» RARORRRR b "‘ R "n'. RN "t"‘n' ""A' "c' ‘l'u‘v'a‘t"'l‘ R0 ".' ) Mmm




-ﬁ' Appendix I

The paper on "Numerical simulation of a thermally stratified shear
) layer using the vortex element method" describes formulation the vortex
a." element method and the transport element method for a non-reacting flow.
Sh% Results for the application of the methods to a non-reacting, thermally
iy 3 statified temporal shear layer are presented.
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! ABSTRACT

Iy

{

5 In computing the development of an unstable inviscid shear layer, it is
¢ found that using a fixed number of vortex elements can lead to large errors
:: due to the strong strain field which develops and acts to distort the

- original vorticity contours. It is suggested that the vorticity should be
" redistributed among elements which are arranged in the local principal

R direction of strain in order to capture this distortion accurately. Mixing
' within an initially stratified layer, which results from the combined action
D of convection and diffusion, is computed using a similar scheme to integrate
- the energy equation. Calculations illustrate the evolution of the

" temperature profile during the growth of the instability.
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:::: I INTRODUCTION

Ny I.1. BACKGROUND

| o Numerical simulation of inviscid two-dimensional incompressible flow
ES using vortex discretization of the Euler equations has been discussed

?,' extensively in recent literature (Leonard [l], Beale and Majda (2], Hald [3)
,"'% and Ghoniem and Ng (4]). The method is based on distributing the vorticity
_EEEE.: field among elements which carry radially-symmetric, compact supports of
EE:::: vorticity (Chorin {5]). By choosing the extent of the support, or the core
. radius of each element to be larger than the distance of separation between
‘\ neighboring elements, the fields of individual elements overlap and high
._:: order discretization of the vorticity field can be achieved. Vortex

A elements move with the local flow velocity evaluated at their geometrical
"3 centers, which is computed as the summation over the contributions of all
EE elements that exist in the field. The motion of a vortex element does not
,“ change its circulation and, in most applications, vortex elements possess
Ei::: invariable core shape and size.

E:::. The attraction of these Lagrangian, grid-free methods is that, by

i.:_';: construction, computational vortex elements are expected to be, at all
times, concentrated around zones of high velocity gradients. When properly
Eﬁ exploited, this property endows the scheme with the resolution necessary to
-"f study interesting phenomena that arise when molecular diffusion is small

: "5 relative to convective transport. For instance, at high Reynolds numbers,
3'.:.’ vorticity exists on small patches of the fluid and it suffices to distribute
K ; computational elements within these patches and hence avoid wasting labor on
,,:5 zones of very small vorticity. That the elements move to capture large

’;’ velocity gradients is particularly important in unsteady and nonlinearly

S ’f' unstable flows where the evolution of the instability causes a substantial
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distortion of the vorticity distribution. Moreover, using a Lagrangian
formulation of the equations of motion avoids the convective non-linearity
and enables the construction of computational schemes which are explicit in
time. The employment of moving Lagrangian grids (Fritts and Boris [6]), or
grid-free schemes such as contour dynamics (Zabuski et al. (7)), are other
successful ways of accomplishing the same goal.

I.2. BRIEF REVIEW

Analysis of the convergence of inviscid vortex methods shows that three
factors govern their accuracy: (1) the scheme of discretization of the
initial vorticity; (2) the form of the core function; and (3) the ratio of
the core radius to the separation between vortex elements (Chorin et al.
(8], Del-Prete and Hald [9], Hald {3,10], and Beale and Majda [2,11,12].)
Results of these analyses have been supported by numerical tests (Nakamura
et al. [13], Roberts [14], and Perlman [15]). In the following, all three
factors are briefly discussed.

To initialize the strength of vortex elements, Del-Prete and Hald [9)
used the average vorticity within an area element around the center of the
element, while Beale and Majda [2] suggested using the vorticity at the
center of the element. Nakamura et al. [13) minimized the global error
between the continuous and the discrete vorticity distribution to evaluate
the latter. Anderson and Greengard [16] proposed the use of a non unifora
mesh to discretize the vorticity field. Using the proceedure in [2) or (9],
one should expect almost a second-order accuracy for short time if the core
function is chosen to be a second order Gaussian. A fourth order Gaussian
was shown to improve the accuracy. In both cases, a critical parameter is

the ratio of the core radius to the distance of separation between the




centers of the elements, which must be chosen larger than unity to preserve
the accuracy for long time.

As the elements move, their separation exceeds their initial value if i
strong strain field arises. This, in effect, decreases the critical ratio
of core/separation, leading to a deterioration of the accuracy. The fact
that large strains cause deterioration in the accuracy of vortex methods has
been observed explicitly in analysis, e.g., Leonard [l1]). Thus, for most
inviscid vortex methods, which are based on using a fixed number of vortex
elements with invariant cores, the evolution of large local strains can lead
to large errors. For example, a circular patch of vorticity may deform into
an elliptical shape with its major axis aligned with the principal direction
of strain. If a small fixed number of computational elements is used, they
may not be able to accommodate these severe changes. Anderson [17) and
Krasny (18], when discretizing non-smooth vorticity, employed a very large
core radius so that as vortex elements moved away from each other due to
stretch, reasonable overlap could still be maintained to satisfy the
requirements for accuracy. One may also be forced to consider schemes of
redistributing the vorticity among a different set of elements under
conditions of large strain. Similar schemes have been used in methods of
contour dynamics to preserve the accuracy of the integration around the
vorticity contours (Zabuski and Overman [19].) Krasny (20], in an
independent effort, used a similar procedure in simulating the evolution of
a vortex sheet by a desingularized Biot-Savart integral.

Extension of Lagrangian element methods to integrate a scalar
conservation equation has been applied to several problems in one dimension

(Chorin [21], Ghoniem and Oppenheim [22,23] and Ghoniem and Sherman (24].)

These schemes were based on using the scalar gradient, in analogy to




vorticity, in the transport process. Anderson [16,25]) constructed a scheme
to solve for a two dimensional thermal in the inviscid Boussinesq
approximation by discretizing the density equation in its vortex form. This
was done by casting the equation in gradient form and discretizing the
density gradients among elements that could be transported. This scheme,
while preserving the advantages of the vortex method, suffers from a major
problem: A large strain field, while it may lead to the generation of large
gradients, depletes the area of computational elements which are used to
transport these gradients.

I.3. ORGANIZATION

In this paper, we apply the inviscid vortex methods to the problem of a
temp -ral shear layer at high Reynolds number. This problem is characterized
by a well-defined smooth vorticity field at time zero, and has well-
documented stability properties. At later times, the shear layer develops
into a complicated structure which resembles a turbulent eddy, and a very
strong strain field is generated around this eddy. We use the analytical
solution of a temporal shear layer to measure the accuarcy of the results at
the initial stages of development, and test the schemes for initializing the
vortex elements. At longer times, we observe the effect of the strain field
on the accuracy of the computations and suggest ways to cope with it. We
then proceed to compute the temperature field as fluids with different
temperatures are entrained, stretched and mixed.

In Section II, the formulation of the vortex method is described, and
is extended to solve for a flow with a strong strain field. The scheme is
applied to compute the evolution of a vorticity layer subject to periodic
boundary conditions. The growth of the instability and its effects on the

flow field are investigated. In Section III, the concepts of the vortex

a " B &N




::o", method are generalized to solve the energy equation and to obtain the
temperature profile across the shear layer during its development. The

paper ends with conclusions in Section IV.
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ITI INVISCID INCOMPRESSIBLE FLOW
II.1. THE VORTEX METHOD

For an inviscid incompressible flow, the vortex transport equation is:

W
R+0Vw-0 (1)

Ay=-w (2)

where u = (u,v) is the velocity, w = V x u is the vorticity, x = (x,y) are
the streamwise and cross stream directions, respectively, t is time, V =
(3/3x,3/3y) and 4 = 9.V. Variables are normalized with respect to the
appropriate combination of a characteristic velocity and length scale. v is
the stream function defined so that u = 3y/3y and v = -~ 3y/3x. The solution

of Eq. (1) can be written as:

w(X(X,t),t) = w(X,0) (3)
while X is governed by:

- uixx,0),t) (4)

where X(X,0) = X. In the vortex method, the vorticity field w(X,0) is
discretized between elements centered at X, i=1,..,N, so that:
N

w(x,0) = L

L l'i fs(x-xi) (5)

where I'i-wi h2 is the circulation of an element of strength w; and f, is the

s
core function. fa(x) = 1/62 f(r/8), where rz-x2+yz, and [ f8 de =1, § is
the core radius, and f6 is a fast decaying function so that most of the
vorticity is concentrated within r < §. To approximate the initial

vorticity distribution accurately, § should be greater than h, where h is
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the initial separation between vortex centers. The core function f plays a
similar role as interpolating polynomials in finite-difference schemes and
base functions in finite-element formulations. By requiring f to be
radially symmetric, the approximation in Eq. (5) is at least second order.

Using Eq. (3) and the incompressibility condition, the vorticity
distribution at any time is given by

N
wix,t) = I T, £(x-X;) (6)
iml
where dxi/dt-u(xi,t) and xi(xi,O)-xi.

The stream function of a single vortex element is obtained by
integrating Eq. (2). Using polar coordinates, for a vortex element placed
at x=0, 3y,/3r = -k(r/8)/r, where k(r) = OIr r’ £(r’) dr’. Moreover, Ug= -
aws/a:. The velocity field induced by a distribution of vortex elements, of

shape f8 and strength Fi located at xi(xi't) is:

N
uw(x,t) = ifl ri Ks(x—xi) (7)

( ’ -X) r
where Ks(x) = — -Lz— K('S) (8)

r

Vortex elements move without changing their circulation (strength) or core
shape, at a velocity computed from Eg. (7).

In the calculations, we used mostly a second order Gaussian core:

(9)
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when applying the vortex scheme to a flow field with boundary
conditions other than u(=,t)=0, a potential flow is added to satisfy these
conditions. In this work, we perform computations for a periodic shear
layer. The velocity field induced by vorticity outside the computational
domain 0 < x < A, where A\ is the longest wavelength of the perturbation,

must be added to u. The total velocity is:

N T. +1 - . 122
u= I 2% (I (y, —(x+jX)) exp (- ((x+3N)7+y7)
i=l 3=0  ((x+jX)“+y”) 8

n (-sinh(2ny/)\), sin(2nx/\))

1 (cosh{2ny/A\)- cos(2nx/A)) ] (10)

where N is the total number of vortex elements in the computational domain 0
< x < A. Note that since § << )\, the effect of the core was included only
for the nearest sister vortices.

The initial vorticity distribution across the shear layer can be well
represented by a Gaussian curve (which should not be confused with the

Gaussian core of individual vortex elements) with a spread 2o:

ox) = 2 exp(- Y3 6?) (11a)

ko

where 48U is the velocity difference across the layer and ¢ is the standard

deviation of the Gaussian. The corresponding velocity distribution is:

U(x) = g‘-’ erf(Y/a) (11b)

where erf(x) = 2//% OIX exp (- rz) dr is the error function. We take AU and
o as the characteristic velocity and length scales of the problem,

respectively.




As it was pointed out in the Introduction, using either a pointwise
discretization, wi-Q(xi), or an area average value w; = Ihxh Q(X) dx, where
xi, i=1,2, .. ,N are the centers of a square mesh of side h, to discretize
the vorticity of the shear layer among vortex elements produced a large
error in the initial growth of the perturbation. Instead, the following
scheme was used:

N 2

for i=1,2,...,N. The error associated with this distribution was used as a
measure of the accuracy of the initial discretization. 1In all cases, the

error je | = J |2(X)-w(X,0)] dX ¢ 107

- The error e increased rapidly as
§/h was decreased below one, which is consistent with the result of the
convergence theory which shows that the overlap between neighboring elements
is necessary for accurate discretization of vorticity. For §/h > 1, the
error was less sensitive to its exact value, uptil §/h = 1.5. 1In the
following calculations, we used §/h = 1.1 - 1.4.

To measure the effect of the accuracy of the initial discretization of
vorticity among vortex elements on the flow field for short times, we will

use the rate of growth of the perturbation. The growth of the initial

perturbation can be characterized by an integral parameter I as:

= ol 0% lu(x,t) - UGx)| ox (13)

which is used in the linear theory analysis of the perturbation.
At t = 0, the layer was perturbed by a sinewave with amplitude €, taken
as 0.001 X\, 0.01 X\, and 0.1 A. 1In Fig. 1, we compare the growth of the

perturbation with the prediction of the linear theory of stability (Michalke
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(26].) to assess the accuracy of the vortex method for short times. For
most of the computations, A = 2 - 13.2 o, which corresponds to the wave
with the maximum growth rate. Eg. (4) is integrated using a second order
Heun’s method with 4t = 0.1, and h = X / 44 = 0.3, and N(0) = 572 vortex
elements. The figure indicates that for € = 0,01 and 0.001, the layer
behaves linearly and the computed growth rate I = dlnI/dt = 0.215 agrees
well with the results of the linear theory, I = 0.22. The latter was
computed as the eigenvalue of the linearized Euler equations (Betchov and
Criminale [27].) Using h = X / 24, i.e. N(0) = 168, and a second order time
integration scheme, I = 0.23. For N(0) = 572 and a first order time
integration, I = 0.24. Within this linear stage of development, the maximum
distance between neighboring element in the direction of maximum strain ax <
1.5 h, i.e the flow is developing mild stretch. For € = 0.1, the
perturbation leads directly to the nonlinear range. ;
In Figs. 2, 3 and 4, the vortex elements and their velocity vectors are
plotted for ¢ = 0.001 XA, 0.01 X, and 0.1 X\, respectively. In the first two
cases, the end of the linear range corresponds to the beginning of the
rollup of the interface, defined here as the line which coincides with y = 0
at t = 0, and the formation of a spiral center at the midpoint of the
wavelength. Concomitantly, the interface starts to stretch near the
boundaries of the domain and two saddle points are established at the
beginning and end of the wavelength, x = 0, and A. Beyond the linear range,
the perturbation continues to grow with more layers rolling around the
spiral center and stretching near the saddles. Within this nonlinear range
of development, special care must be exercised or the numerical accuracy
deteriorates quickly, as exhibited by the evolution of irreqular motion near

the saddles and the loss of organization of the evolving structure.
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I1.2. EFFECT OF STRETCH

The loss of organization, which is associated with the development of
strong stretch, illustrates one of the fundamental problems of the vortex
method. Vortex elements, which start as cores with radial symmetry, may not
properly represent the vorticity field after it has developed strong local
strains. As the effective distance, 40X, between neighboring elements
increases, the ratio §/8x (equivalent to §/h) reaches levels where the
vorticity discretization becomes inaccurate. One obvious remedy is to
restart the calculations with smaller values of h to allow a larger number
of weaker elements to represent the strong distortion. However, that only
delays the onset of the crisis at the expense of using more elements at the
initial stages when they are not needed. Several remedies may be suggested:
(1) utilizing deformable cores; (2) employing large cores; or (3) using more
elements as the distance between the original elements increases.

The first scheme, utilizing deformable cores, depends on assuming that
the core structure will become elliptical as stretch develops, with the
major axis of each element aligned with the local principal direction of
strain. The vorticity distribution within the core must also adapt to the
geometrical boundaries of the cores. If elements with constant vorticity
within the cores and zero outside, i.e. Rankine vortex elements, are used
then these elements will become Kirkchoff vortices which have analytical
expressions for the induced velocity field. However, there is an obvious
limitation on maintaining one ellipse as a single element if the ratio
between its axes exceeds a reasonable value. Thus, this scheme is
discarded.

The sezond scheme, in which one uses large cores, did not yield

accurate predictions for the growth rate within the linear range, in
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accordance with the results of the convergence theory. Moreover, it will
fail at the point where §/4X < 1 due to stretch. It does, however, delay
the deterioration of accuracy since it maintains a reasonable overlap
between neighboring elements for longer times.

The third option, redistributing the vorticity field among an
increasing number of elements arranged along the direction of principal
direction of strain, is employed here. One monitors the distance between
neighboring elements in the direction of maximum positive stretch ax. If ax
> 8 h, where 1 < 8 < 2, an extra element is placed halfway between the
original elements and the vorticity is redistributed to compute the share of
the new element. Ideally, this redistribution should not perturb the
existing vorticity field, that is

N+n ~

ri fs(x-xi) = ri fs(x—xi) (14)

w(x,t) = IR
1=

z
1 im=1

~

where n is the number of new particles, and a ~ indicates the new value of
the strength and location of the vortex elements. Unfortunately, this is a
large dense system of linear equations to be solved every time step.
Therefore, its benefit does not warrant the added cost.

A more economical scheme is based on equally interpolating the strength
of the two original elements among the three elements, i.e. assuming uniform
stretch between the two original elements. This amounts to splitting the
original vortex dumbbell formed of two vortex discs into three discs when
the distance between the centers of the two discs exceeds a threshold, as

shown in Fig. 5. To minimize the interpolation errors, the maximum

interdistance between neighboring elements is taken as 1.5 h. This will

also keep the ratio 5/4x within reasonable limits.
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¢ To illustrate the degree of stretch experienced by this flow, we plot
3— the growth of the length of the interface, and the total number of vortex

‘ elements, N(t), used to capture this stretch for three perturbations ¢ =

: 0.001x, 0.01X, and 0.1 X in Figs. 6, 7, respectively. Within the linear i
range the layer is subjected to mild stretch and N remains almost constant.
Beyond that, the length of the line grows linearly and N multiplies
accordingly. From the plots of the location of vortex elements, we noticed
; that most of the stretch is concentrated around the spiral center and the
saddles at the boundaries of the domain.

I1.3. SHEAR LAYER DYNAMICS

fj Figures 1, 2, 3 and 4 reveal that the growth of the perturbation and

¢ the development of the eddy structure can be divided into four stages: (1)
K linear growth; (2) rise to a maximum amplitude; (3) decay to a constant

2 amplitude; and, (4) very slow decrease of amplitude. The first stage has
been discussed. The strongest stretch and fastest multiplication of the

) vortex elements occur during the second stage where an eddy is forming in

g the middle of the wavelength and two braids are evolving between each two

‘b neighboring eddies. During this stage, the core maintains almost a circular
:; configuration and the stretch is concentrated within the braids.

Ej In the third stage, the eddy deforms into an elliptical structure,

ii while the size of the perturbation decreases from its maximum value. This

" is accompanied by more stretch along the braids and within the core, and a
; slowdown of the eddy rotation. By the end of this stage, the thickness of
.: the braids at the saddle points has become extremely small. At the final

': stage, the envelope of the core reaches a dynamic equilibrium, i.e., it does
N not rotate any more, while its boundaries keep on stretching as the fluid

N within the eddy starts to move in the main directions of the streams.
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Although there are signs of that, it is difficult to confirm that the flow
¥ has reached a steady state.

o The kinetic energy of perturbation u’. u’/2, where u’= u - U, and the
total kinetic energy in the flow within the computational domain, u.w/2, are
plotted in Figs. 8a and 8b. The first quantity rises with the growth of the
perturbation and the formation of the eddy, then falls with the collapse of
the eddy and the return of the fluid to the main streams (Corcos and Sherman
K {28]). The total kinetic enerqgy is conserved since the flow is inviscid.

X Using larger values for h while keeping §/h the same caused a slight

2 fattening of the core at latter times, while the main features of the flow

o were reproduced almost exactly. A similar modification of the structure is
observed when using a first order time integration scheme, or increasing the

time step. It was concluded that the errors introduced by using a small

e 2 Al e

v number of elements or a low order time integration scheme were numerical-

H diffusion-like errors. We also found that the dependence on the value of h,

o or the initial number of elements, becomes much less pronounced when the

scheme of increasing the number of elements with stretch is employed.

Figure 9 shows a qualitative comparison between the experimental results of

" Roberts et al. [29]) and the computational results. Here we use a Galilean

transformation to compare the experimental results of the spatially-

) developing layer and the computational results of the temporal layer.

S The physical parameters that govern the flow field are X and €.
Results for the rollup of a layer with A\ = 10.5 < " are presented in Figs.
10 and 11, showing the growth of the perturbation and the vorticity field.

4 N is the wavelength of the most unstable perturbation. The computed growth

ﬁ rate I = 0.214 while the analytical value is 0.208. More vorticity remains
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in the braids between the eddies which are not strong enough to accomplish
the same stretch as in the case of Az

Figures 12 and 13 show results for A\ = 2 x', with €¢ = 0.01X and 0.1),
respectively. In the first case, I = 0.18 while the analytical result is
0.173. The core is smaller and weaker than for the case of A" and hence the
braids are thicker and maintain more of the original vorticity. At later
times, a small scale rollup is observed near the boundary of the domain due
to the instability of the vorticity layer that forms the braids. This
rollup occurs only at the fourth stage of development when the midsection of
the braids becomes almost stationary, i.e. when the motion produced by the
braids is neutralized. Comparing Figs. 12 and 13, we see that contrary to
the most unstable case, the effect of the initial perturbation is more
pronounced here in terms of the size and shape of the eddy and the braids.
Higher amplitudes of perturbation tend to form a larger core and thinner
braids. The ratio between the major and minor axes of the elliptical core
increases with ¢ and small amplitude waves start to appear on the braids.

Figures 14 and 15 show results for A = 3 x* with amplitudes ¢ = 0.01),
and 0.1)\, respectively. The effect of the amplitude is emphasized further
since at larger ¢, the core splits into two eddies. This bifurcation

phenomenon was observed before by Pozrikidis and Higdon (30]. The braid

instability is manifested here by the long waves that appear at the later

P

stages of development of the layer.

G a Y

With the presence of two perturbation wavelengths, a new process is

2Py
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observed. Fiqures 16 and 17 depict results for a layer subject to two

e
s

.
o
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perturbations superimposed at t = 0, at A" and 20" with e = 0.1)\" for both
perturbations. The results show that when the amplitude of the two

perturbations are equal, pairing starts at the end of the second stage and
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g before any substantial elongation of the eddies. The growth of the
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4 subharmonic perturbation closely resembles that of the fundamental, as shown
]

. in Fig. 17. The eddies continue to deform while they pair until the "vortex
j' fluid" contained within each structure start to rotate around a common
?;. center and their original boundaries become indistinguishable. Similar
o qualitative observations were shown in the computations of Corcos and
R Sherman [28] and Riley and Metcalfe (31].
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;.‘: II1 THE TEMPERATURE DISTRIBUTION
)
:.;;:. III.1. THE TRANSPORT ELEMENT METHOD
1 In an inviscid incompressible flow, the temperature distribution
"52 evolves according to the following form of the conservation of energy:
s
R At}
) H+uwmr=-o0 (15)
)
R
‘,:":, where T is temperature. This is equivalent to the statement that
0:.‘
e T(X(X,t),t) = T(X,0), where X(X,0) = X and dx/dt = u(X,t). To solve this
'u- equation using a Lagrangian element scheme, we start by introducing the
* 'r\
E: temperature gradient q = VT, where q = (p,q) is a vector proportional but
L) A
': opposite to the heat flux vector -k q, k being the thermal conductivity.
[
$ The transport equation of q is obtained by taking the gradient of Eq. (15)
v,
3
s '.;; and rearranging:
R
.'o._ 39
. g tuwWg=-qWlu-gxw (16)
‘\"'4 )
-’; where w = w e, and e, is the unit vector normal to the (x,y) plane. Thus,
: 2 along a particle path x(X,t), the temperature gradient changes according to
= the local strain field and turns with the local rotation of the fluid
)
[
_,u.: element. Using the vortex method described in the previous section, the
i
]‘,' velocity gradient may be computed directly from the vorticity distribution
as: Wu= 1§ l‘i vxa(x-xi) + Vup, where “p is the irrotational component of the
-, velocity.
Syée
a
o The scheme proceeds in the same way as the vortex algorithm. The
0.‘ initial temperature gradient is discretized among a number of elements
LAY )
," located at the centers of a square mesh of side h so that:
L
B
-:t
3
‘\.::
1, ’:
-
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N
q(x,00 = £ g h® £ (x-X) (17)
iml
where q(x,0) is the initial distribution of the temperature gradient, q =
VT(X,0). To initialize q;, a similar procedure to that used in computing
the strength of the vortex elements is employed here, i.e. Eq. (12) with q
instead of w, is solved to find qi(O)’ To update qi(t), Eq. (16) is solved
in two fractional steps: in the first step, the elements are transported
without changing their strength or their core shape or size. In the second
step, the strength of the elements is updated according to:
dqi
I -9 - vui -q; X W (18)
Thus, a system of ordinary differential equations must be integrated to

update the strength of the gradient elements as they move along particle

paths. The local gradient at time t is computed from:

N
2
q(x,t) = ifl q;t) h fS(X—xi) (19)

The core function f6 may be different for the vortex elements and the
gradient transport elements. In this work, we use the same form for both.
The temperature can be calculated by direct integration of the gradient
along a determined path. As pointed out by Anderson [17], a convenient
expression can be obtained by expressing the temperature as a Poisson
integral in the temperature gradient, T = [ WG(x~x’') . VI(x-x') dx'. Using
Eq. (19) for q;, we get:

N
T(x,t) = [ qi(t) . vca(x—xi) (20)
i=l

RIS \ .; - -,‘-_.\.‘-‘.‘\.- oo
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where

154§l K(%)

.=
8 r

while the relationship between f and k is as before. This expression is
convenient when used in connection with the vortex method since all the
functions involved in the summation must be computed for the transport of
the vortex elements and with simple programming tricks, the increase in cost
can be minimized.

Results obtained for the temperature distribution in the shear layer of
Figs. 2, 3 and 4 are shown in Figs. 18, 19 and 20, respectively. At t = 0,
the temperature distribution is described by an error function, with T(x,0)
= 0.5 (1 + erf(Y)). This choice is motivated by the fact that this is the
fundamental solution of the diffusion equation. Therefore, an initial
discontinuity in temperature would develop into an error function before the
perturbation grows and convection effects become important. The layer is
first perturbed by a sinewave by displacing the elements according to
Y-;(x), and then the temperature gradient Q(X) is computed. The discrete
values qi(O) are obtained as follows: Since the temperature is constant
along the streamlines after the perturbation Y-Q(X), then T(X,0) = &(X) =

0.5(1 + erf(Y - Y(X)). From this equation we can recover the initial

distribution of P(X,0), and Q(X,0) as follows:

20 - ay
P(X) = % - -Gau(Y-Y(X)) =
(21)
30 iy
Q(X) = 5 " Gau(Y-Y(X))
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where Gau is a Gaussian similar to Eq. (lla). These expressions are then

i used in Eq. (17) to compute q- The values of qi(O) were initialized one
column at a time, i.e. for fixed values of X, to avoid solving N2
simultaneous equations, and instead solve N, of Ny, simultaneous equations.

" The error associated with this approximation was very small since the
perturbation was kept at a low value.

o In the computations, we used the same particles to transport vortex

" elements and elements of the temperature gradient. This represents a

substantial saving since the kernel functions appearing in the expressions

of the velocity, velocity gradients, and temperature can be computed all at

once and the velocity is computed only for one set of elements.

P W S SO

III.2. ENTRAINMENT IN A SHEAR LAYER

To quantify the overall change in the temperature distribution, we

SRS DA APIPAD VS

define a quantity T, similar to the growth I, as;

-

A

T= o 0" IT(x,t) - 8(x)| (22)

T can be regarded as an average thermal thickness of the shear layer.

Within the linear range, the temperature distribution remains essentially

) the same, except for getting shifted up or down depending on the local sign

[ of the perturbation. In Fig. 21, the natural logarithm of T(t) is shown for
three values of the initial amplitude of the perturbation. The accuracy of

Y the calculation of the temperature profiles depends on the initialization of
the vorticity and temperature gradient, and on the value of §/h.

! During the second stage, and with the rollup of the interface and the

o establishment of a spiral center at the midpoint of the wavelength, a

complex temperature gradient develops as a result of the motion of the cold

fluid upwards and the hot fluid downwards around the spiral center. Within
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this stage, if the number of transport elements remained the same, i.e.
stretch was not accommodated by introducing elements where the local strain
is large, the temperature distribution would collapse very quickly. In the
problem of periodic shear layer, this collapse leads to values of T(x,+=,t)
<1 and T(x,-=,t) > 0. The reason of the loss of accuracy is clear from Eq.
(16). when the elements move apart, the accuracy of computing the velocity
gradient Wu deteriorates, and hence the new values of q; accumulate large
errors. Thus, while the calculation of the velocity field at the early
stages of strong stretch using a fixed number of vortex elements may be
acceptable for a short period of time, the calculations of the velocity
gradient and the evolution of a passive scalar will show unacceptable
errors.

To continue beyond the linear stage, the distance between neighboring
elements in the principal direction of strain, Ax, must to be monitored. 1If
4x > gh, where 8 > 1, one extra element is added between the two original
elements and the total value of q; is redistributed equally between the
three elements. In the calculations, we used 8 = 1.5. Numerical
convergence, in which one systematically refines the numerical parameters
until no more changes are observed, was used to obtain these results.

The effect of the shear layer rollup on the temperature distribution is
seen in Figs. 18 and 19. Immediately after the interface reaches a vertical
position, an S-shape starts to form indicating that cold fluid has been
transported from the lower stream into the upper stream and vice versa.

This phenomenon, known physically as engulfment or entrainment, relies
solely on convective transport and is observed when molecular diffusion,

which acts to dissipate the sharp gradients, is small. Fast entrainment

with small diffusion leads to "unmixedness" of hot and cold fluids within
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the eddy core. With more fluid being transported to the opposite stream the
S-shape grows, reaching a maximum amplitude when the interface becomes
horizontal. At this moment, fluid with the maximum and the minimum
temperature has been entrained into the core, i.e. entrainment has reached
all the way to the free streams to bring fluid into the core of the eddy.
This is the stage of maximum entrainment when the core size reaches its
largest size and cannot accommodate any more fluid. In the case of ¢ =
0.1), it corresponds to t = 8.0, which is at the end of the second stage of
development. To make the correspondence between the temperature profiles
and the evolution of the interface of the layer clear, we plot the latter in
Fig. 22, showing the actual vortex elements that were used in the
computations of the interface. At this time, the interface has rotated 180°
around the spiral center. This is the first step in the process of
homogenization of the core.

As the core rotates further into the third stage, the inner part of the
interface develops a secondéry instability that rolls up in a very similar
manner to the primary instability. This secondary instability is in phase
with the primary instability and can be envisioned by zooming in on the
intersection between the interface and the horizontal centerline of the
layer. Due to the elongation of the outside envelope of the core, the
wavelength of the secondary instability grows with time, as seen from Fig.
22. However, the amount of fluid within the elliptical envelope remains
constant, or decreases slowly as seen from Fig. 21 for the temperature
thickness of the layer. The growth of the secondary instability provides a
mechanism of internal entrainment within the core. During the growth of the
secondary instability, an inverted S-shape, or a Z-shape, forms in the

middle of the temperature profile, Figs. 18-20. The entrainment associated
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;;: with this instability turns the fluid in a clockwise fashion, making the
Yf: inside of the core more uniform. This is seen from the decay of the peaks
f“; in the temperature profile as this Z-shape grows.
isé with another 180° turn of the.xnterface at the spiral center, a smaller
%“* S-shape forms in the middle of the profile due to ‘he onset of an even

'H shorter wavelength instability that is in-phase with the primary

;2: instability. While the existence of the secondary instability was not

}E: observed before in numerical simulations, its presence is clearly seen in
{,, the experimental results in Fig. 9.
E'i The onset and subsequent growth of successively shorter wavelength
;5$ instabilities continues, leading to a more uniform temperature distribution
LO_ within the eddy core. An asymptotic limit to this process can be foreseen:
i% it is the formation of a temperature profile with the following shape: T =
éa T,aty > 48/2; T=T_ _aty<-4/2, and T = (T, +T_,)/2 in between, where 4
f;j is the minor axis of the elliptical envelope at x = A\/2. This shape has
ﬁe been measured experimentally by Konrad [32], (see also Broadwell and

‘32 Breidenthal [33],) for mixing layer flows at high Reynolds numbers. This

is, to our knowledge, the first time it has been computed numerically.

“:{Qr' X

By the end of the third stage, the layer cannot absorb any more energy

?'. »
$§ and a relaxation process occurs, during which the kinetic and thermal energy
o
“:r are fed back into the main flow streams. This reverse action is accompanied
b:f by the fluid leaving the core and moving back into the main streams at a
0
o very slow rate.
-
f I11.3. EFFECT OF MOLECULAR DIFFUSION
®.
f¥i The generation of large temperature gradients within the core as
.&: successive instabilities evolve gives rise to large molecular diffusion
} ‘-.'
N fluxes which act to smooth out some of these gradients. While for most
w
N
Yy
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cases of interest the diffusion transport is very small relative to the
convective transport, i.e. the Reynolds number is high, diffusion plays an
important role since mixing at the molecular scales can only be accomplised
via molecular diffusion. Thus, the combined action of convective
entrainment and molecular diffusion leads to the homogenization of the

temperature within the eddy core. To simulate the effect of diffusion for

.5 3~ SRS T L e

small values of « in the current model of a shear layer, Egs. (15) and (16)
are modified by adding a diffusion term:
aT 2
: a—t+u'VI'-aVT (23)
' and

o X

%% +u¥g=-qWUW-gxw+a qu (24)

where a is the non dimensional molecular diffusivity, or the inverse of the

Peclet number. At high speed flow, the Peclet number is typically 103—105.

LRl R s RV Y

To solve Eq. (24) using the scheme that we have developed, a third

fractional step must be added, in which the value of q is updated according

X Al X R KRR
LR T

to:

X % = o 7%q (25)
at

l

4

a without changing the shape of the core function or the value of q;. By
{ taking § = §(t), and substituting Eq. (19) into Eq. (25), we find that
‘i

d&z/dt = 4a. Thus, the core radius must change according to:

P 82-8§+4at (26)
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j-_: where 80 is the core radius at t = 0 (for more discussion, see Leonard (1],
f.. Ashurst [34]).) The cores of the vortex elements and of the temperature
vyl gradient elements become different with time. |
::E Results in Fig. 23 show the temperature profile at T = 20 for the case 1
\ |
& of A" and ¢ = 0.l>\*, evaluated for « = 0.0, 0.00001, 0.0001, 0.001, 0.01 and |
! |
o~ s 0.1. Note that the temperature profiles of the first two cases are almost
2 ‘
:j identical, indicating that the effective diffusivity of the inviscid |
O _ i
> calculation is of the order of 10 5. In the last case, the temperature
4
by profile is similar to the case of pure diffusion, indicating that diffusion
I‘\'
proceeds at a rate faster than the instability. It is also noticed that fc
-:.. moderate values of «, 0.0001 < « < 0.01, diffusion only affects the core of
o the eddies, making them achieve a homogeneous state faster.
_'f Greengard [35], in his analysis of the core-spreading vortex method in
*; which a fixed number of elements are used to perform the convective
( transport and their cores are expanded to account for the effect of
’-I
-7 diffusion, showed that the scheme does not converge to the correct equation
::;f of motion except when the flow field outside the region |w| > 0 is uniform.
N
We have used a core spreading scheme to simulate the effect of diffusion in
.-
AN the energy equation with two modifications: (1) the number of transport
‘.—I
-:;3 elements which discretize the gradient field is increasing with time; and
",
; (2) o is kept small. Utilizing an increasing number of elements to perform
o
- the convective transport is essential since it is important to determine the
,‘:E gradient field accurately, in terms of the location and strength of the
()"
" elements, before the diffision effect can be added. 1In essence, adding
F: transport elements at areas of high strain allows the computational elements
.‘ to capture all the vorticity, and temperature gradient carrying fluid at all
;- times, even after the vorticity has been fragmented by the action of the
‘{'
-'1
2,
w,
o
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strain field. Without this step, strain will create areas which are void of
elements, thus, diffusion cannot be represented.

In the particular application of a shear layer at high Reynolds number,
the flow field is uniform outside the area where {w| > 0, and this area
expands slowly by diffusion if « < 1. Limiting the simulations to small
values of a: (1) reduces the errors associated with the fractional step
scheme used to solve Eq. (24) (Beale and Majda [36]); and (2) reduces the
errors concomitant with convecting an element with the velocity evaluated at
its center while its core radius is growing. To accommodate this growth,
which causes the spread of vorticity in the direction normal to the
streamlines, one may be forced to add elements in the direction normal to
the maximum principal strain direction, and then redistribute the vorticity.
It is, therefore, clear that the scheme is only applicable when a < 1 and
for short time, i.e., at < 1. If these two conditions are not satisfied,
one must divide each element whose core radius is larger than a critical
value into a number of sepapate elements so that the convective transport
can be performed accurately. Since most interest in shear layer flows is at
high Reynolds number, or a < 1, and within the short time of development of
the convective instability, we feel that the current scheme is sufficient
for this application.

To define a quantitative measure of mixing in a single phase fluid with
thermal stratification, we observe first that mixing is only achieved by
molecular diffusion. Large entrainment fluxes bring the unmixed fluid
layers in contact along a larger interface; however, molecular diffusion
across this interface is what accomplishes the actual mixing. A measure of

mixing can be defined as:
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N

M(t,a,8) = oI I7IT(x,t,@€) - T(x,t,0,¢€)|dx

Note that M(t,0,¢) = 0, while M(t,«,0) is due to diffusion only. In Fig. 24
M(t,a,o;l) is plotted for various values of a and for {3 represents
mixing due to the combined action of entrainment and diffusion. At very
small values of «, mixing is limited by the amount of diffusiocn across the
fluid layers which have been entrained into the eddy core. Since for these
values of a the convective transport is faster than the diffusive transport,
mixing increases approximately as va. However, as o increases, and at
longer times, mixing proceeds at a slower rate since it becomes bounded by
entrainment of unmixed fluid into the eddy core which almost ceases by the

end of the second stage of rollup.

—
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,;S IV CONCLUSIONS
}h In this work, the vortex element method is used to compute both the
t- early and late stages of development of an inviscid temporal mixing layer.
is In this method, the vorticity is initially discretized among overlapping
_Q: element of radially symmetric ccres. We find that using a scheme which

i depends on equating the vorticity at the centers of the elements with the

3 accumulative value induced by all elements is necessary to obtain accurate
53 results for initial vorticity discretization. We also find that to ensure
(, the accuracy of the solution for short times, the ratio of the
’i- core/separation should be larger that one. Very large cores introduce a

:I strong perturbation in the vorticity field, while smaller cores cause a fast
; deterioration of accuracy. Using fourth order Gaussian cores results in

3 better accuracy over second order Gaussian cores. However, we feel that the
':; improvement in accuracy does not warrant the added cost.
{ ‘ As time proceeds, the distance between neighboring elements exceeds its
;5 initial values due to the generation of strong stretch. This leads to the
;5 computation of inaccurate velocities and is manifested by the irregular
4 motion of the vortex elements. To overcome this problem, the vorticity is
‘\H constantly redistributed among elements inserted along the principal
\:g direction of strain to capture the local deformation of the vorticity field
:E; and to improve the resolution of the calculations. This is achieved by an
_: insertion-and-interpolation process, which is applied where the distance
;S between the neighboring centers along the principal direction of strain
v‘; exceeds a threshold value. We show, using solutions for a shear layer

‘: perturbed at different wavelengths and amplitudes, that this process yields
'E} accurate solutions for the vorticity distribution at long times and after
);: strong strain fields have caused a severe distortion of the streamlines.
1]
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This scheme enables one to accurately compute the local velocity gradient
which, while it is not required in connection with vorticity convection, is
necessary for the accurate evaluation of the convection of a passive scalar.

The temperature gradient, distributed over transport elements which
resemble in their structures the vortex elements, are used to compute the
temperature distribution as the rollup evolves. Contrary to vorticity,
scalar gradients are not conserved along particale paths, thus, the strength
of these transport elements is changed according to the straining and
rotation of the material elements. The scheme is capable of capturing very
sharp gradients that develop within the core since the elements migrate
towards these zones by convection. The multiplication of these elements via
stretch, which inadvertently mimics the physical process by which large
scalar gradients are genereted, provides a naturally adaptive grid to
compute these gradients. By expanding the cores of the transport elements,
the effect of small diffusivities can be simulated as a small perturbation
to the convection field. Diffusion, even at high Peclet number, is
responsible for generating areas of uniform temperature inside the eddy
since it acts to smooth out the sharp gradient created by convection.

The application of vortex methods to problems in which the no-slip
boundary condition along solid walls must be satisfied can be accomplished
using the random vortex method (Chorin (37}, and Sethian and Ghoniem [38].)
In this method, extra vortex elements are generated along the solid walls to
cancel the slip velocity, and the diffusion of vorticity is simulated by the
random walk of the vortex elements. At high Reyolds number, a strong strain
field is expected to cause similar problems as described in this work, i.e.,
areas of large stretch will be depleted from vortex elements and accurate

resolution of the vorticity field may be lost around these areas. Extending
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the insertion-and-interpolation scheme described in this work to the random

vortex method requires:

(1) adding a third fractional step, which must be

performed after the convection and before the diffusion steps, for the

redistribution of the vorticity field among elements arranged in the

direction of principal strain; and (2) computing the strain field at the

center of the vortex elements in a Lagrangian form since, due to random

walk, neighboring vortex elements and neighboring material elements change

as time evolves.

The implementation of these two steps must be preceeded by

careful formulation, and will require lengthy computation.
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FIGURE CAPTION

The growth of the perturbation amplitude I with time for the most
unstable case, A\*, for three values of the initial perturbation
ge/x = 0.001, 0.01 and 0.1, showing the linear range and the
saturation of the perturbation. Each curve is normalized with
respect to the corresponding value of I at t = 0.

The location and velocity of the vortex elements during the
rollup of a temporal shear. X = X', with €¢/A = 0.001. N(0) =
572, h = 0.3, 8 = 0.375, and 4t = 0.1.

The location and velocity of the vortex elements. Wavelength is
A", and /A = 0.01. At t =0, N= 440, h = 0.33, § = 0.4 and 4t
= 0.1.

The location and velocity of the vortex elements for A = X*, and
€e/x = 0.1, All the numerical parameters are the same as in Fig.
3.

Schematic diagram showing how the vorticity is redistributed
among three elements when the distance between two neighboring
elements exceeds a pre-specified value. (xn,yn) are the
coordinates of the new elements.

The total length of the interface, originally at y = 0, with time
for the cases presented in Figs. 2, 3, and 4, normalized with
respect to its length at t = 0.

The number of vortex elements used to represent the vorticity
field during rollup for three initial perturbations, normalized
with respect to the corresponding value at t = 0.

(a) The total kinetic energy of the perturbation based on the
perturbation velocity, (U(x)-u(x,t))z, and (b) The total kinetic
energy of the flow, u?, for /A = 0.001, 0.01, 0.1.
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The evolution of the vorticity field with time, compared with the
experimental results of Roberts et al. [29] for the spatial
development of a small perturbation of a shear layer.

The growth of the perturbation amplitude for A = 10.5, ¢/A =
0.01. N(O) = 455, h = 0.3, 8§ = 0.375 and 4ot = 0.1.

The location and velocity of the vortex elements used in the
calculations of the case shown Fig. 10.

The vorticity field for A = 2 A", &/A = 0.01. N(0) = 540, h =
0.44, & = 0.5, ot = 0.1.

The vorticity field for A = 2 X*, €¢/\ = 0.1, using the same
numerical parameters as in Fig. 12.

The vorticity field for A = 3 X*, €e/A = 0.01. N (0) = 818 and
the values of h, §, and At are the same as in Fig. 12.

The vorticity field for A = 3 X", e/ = 0.1, using the same
numerical parameters as in Fig 14.

The location and velocity of the vortex elements for two
perturbations, A, = X" and X, = 2 A", with ¢ = 0.1 X" for both
perturbations. N(0) = 336, h = 0.55, 8§ = 0.6 and 4t = 0.5. A
fourth order time integration scheme is used to transport the
elements.

The total amplitude of the perturbation of the case in Fig. 16.
The temperature distribution across the layer at the center of

the core, for A" and ¢/x = 0.001. The numerical parameters are
the same as in Fig. 2.
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The temperature distribution across the layer at the center of
the domain for A" and e/A = 0.01. The numerical parameters are
the same as in Fig. 3.

The temperature distribution across the layer at the center of
the core for A" and €/A = 0.1. The numerical parameters are the
same as in Fig. 4.

The variation of the logarithm of the temperature thickness T
with time for the cases in Figs. 2, 3, and 4.

The rollup of the interface, defined by the layer which coinsides
with y = 0 at t = 0 for the case shown in Fig. 4.

The effect of thermal diffusion on the temperature distribution
across the layer. Temperature is shown at t = 20 for the case
shown in Fig. 4.

Total mixing, M(t,«,0.1) due to the combined action of
entrainment and diffusion, evaluated for different values of a.

IR S I L R T S SR i e S, Wy PO &
R A A = & 5 i
T RN Lo



W W W W w v m — e = =

LOG(I/10)

TIME

Growth Rate for the Most Unstable Mode

e = 0.001A
e = 0.01A -
- =
e = 0.1 i
s 1w 5 w0 3 @ ®




...... L T N YO Y inpiiniete 1
E L-2
g‘
s
P'l.'
- |
TIME = 0.00| ELEMENTS = 572 TIME = 24.00 | ELEMENTS = 891
|
e
|
|
|
|
TIME = 8.00{ELEMENTS = 572 TIME = 30.0 | ELEMENTS = 1623 |
{
; TIME = 16.00 | ELEMENTS = 595 TIME = 37.50 | ELEMENTS = 3257
5 TROER CF INTEGRATION-2  ORDER OF CORE-2
‘
*: LATER*13 BLOBAAYER'44¢ S{(B-0.375 THIOGANESS=2.600 ANPL.*0.08W W LONGTH-13. 29

B et A iy



tadhd aie ad o an . AR ah il Mol Nad aB Ll ol tal TR PR RS FIL UL U U

T RN ¥

........................

TIME = 0.00 |ELEMENTS = H4ugQ TIME = 18.00| ELEMENTS = 980

TIME = 6.00 |ELEMENTS

huo TIME = 24.00 | ELEMENTS = 1778

‘ TIME = 12.00 | ELEMENTS = 574 28.5| ELEMENTS = 2747

ORCER CF INTEGRATION-2 ORDER OF CORE-? HESH-21x2) STATION-22

LAYER-11 BIOBAAYER'4Q S(GB-2.420 THIDQESS=3.320 WMPL.-2.0100 U.LENGTH-13.29

N e T A T e T e e e S S e T e T e
e N A S O N e e A N R S L S RN
BRGTC LG W AV PR R P8, P PRV . A AW Y VRS

X d‘-v'—“l’;-' Ca't s ~a T W
ARGt M



4
T

P TIME = 0.00 | ELEMENTS = 440 TIME = 12.00 | ELEMENTS = 1252
- !

: TIME = 4.00 | ELEMENTS = 586 TIME = 16.00 |{ELEMENTS = 1782

‘v"v( A

E

o

W .-. ,-.'/-‘.."‘ ’t‘_\'..\’-.' ;l; .\ '-.":;

r TIME = 8.00 | ELEMENTS = 858 TIME = 20.00| ELEMENTS = 2458
o
‘.¢
,,'.
»
il TROER OF INTEGRATION-2  ORDER OF CORE-2  MESH-21x21  STATION-22
l..‘ !
';:"' LAYER*11  BLOB/AAYER-4Q SICB-2.408 THIDKNESS=3.300 AMPL.<0.1000 U.LENGTH-13.29
o
o -
. 7/
=
e,

----------

PR R, . e Tm e . LRI T n 0 N G A S At ) Ko o “ r\"\."\-:;’i
. o '{ J’»‘.o oo .1"'.;.5?:"..0-'.. (X .' \ 'n".n.. A ALS l‘?‘l "* N




%
CAPEAAALLY

»
L
-" .

-.‘».' “. y - -
S

;f.:; >0
A A ;{t i

<

vt o
4 .

o o

NN

A
-ﬁ ..l'\

12
:.l‘ef"

(X MMM

A S
'...'!‘”0. J'

3

%,

L

e T e e
CaC 2 e -",;f? ‘

"
“

1Y

Chd i

-F“’-_. * -‘..'v-

%,
>

B A

.

-~

“a "u e
W W ¥
(o a0

“»
g
-

s
o

e e
A i M P o Mg

(AR

e T TS N

s o
X MRS Puh Popt M




~ ]

L/t

STRAIN

: B
Fatafetutn

Y 2 Tt Y

-

La sl

™
X

Lo g

e Al e Bie Ala ans M AR Au. Ai afeini-Ala Ale Ais dte die Ala AthAle e Al Al Aha Bac A% ‘Al A8 A%a A'e ARe BYa At |

LI We VT e A

- 2

A T N

3 10 15 20 25 38 33 40

TIME

‘\ ‘(-P .('Ff \4 WPQ" (‘n' " " -

o ]
'. ‘.‘l..'.. t.'.t.’ .. ‘.“""l. 'l.... [\ ‘.' - A ‘Q l.. .'l. .i. .. '..|.‘. "‘.‘. o I‘.‘l' .g' 0‘\"‘;. ! .. ¥ .. g' N f I. " n 0

43

\-(.(‘.’.r

»\.-\.-\\

-

-~

._.(,

&,




PR L iag i aa kel sk tafcalesadooal

R~k el cak tad alo-at o gn ok ot Aka Ale Ale She Ahediie i [

Tr e = 0.01) 4
e = 0,001\ 4

RATIO OF BLOBS AT 1/10

TIME

*r" "
t - —
- .'J‘-'-f—'-f' SIS ._~._~._-.\_.'_. ._‘_.\ ._.'_:.\.-'_\ _(\.‘_.‘p\\- N
Tee. - el . R PTAL T CCON
J\'}S:I:r*fhf}.’:"_«‘:'m :'x':‘x"‘al';)\’.:x‘.:.-(_ '-J?.&Mwn_A‘-A..I'._A.‘\..(;(‘.A&A.ﬂ-&j‘.f-n‘_nul TS




16 14 RS 1 1 1 T | 1
€ = 0,001
14 r € = 0.01)\ 1
&
— 12 F -
<
=
Q 10+ e = 0.1 -
™
W 8 F =
(@]
5 et ~
e
L 4+ -
v
e A
g | | 1L )| A 1

TIME




T e e 23a A a A% &' a 2'a 8 4 8's 4 8 a gk sat ha da hh ofa ok ol At s e Al A D 1

TS - N

PR

TOTAL KINETIC ENLRO

J

=
r
1

BENT T

v

S a AN

f




Lttt AN aNL ARl M ahtL AN st JA0 ot D atih ol ai AR A AV SRR abi. she At alil St s et ahcates nad alisanar atunaln et aacand aiarndih ol atinl NI SNL SERR o EEL IR SR R S AR A T I
L BN . 1

N .
b
=
»

dindiiandn s aandboanth, N ST N U W U U PG URY W WA G G Y R e 2 PO PP, UL, L ~'\x_~.xj




— - - wor T -w—Xh;—zn.wmmwwwmvmvwva

,, 3.9 T T T

WON 3.0 r

.o

LOG(L/18)

R 2.5

3 el R iy
4' Yl TG OO VS (4 s )

0 Yo Y e
\ )
" " “' ‘.. ". '|. ... "’l 45, ‘.'Q ’a 'f ‘ .h‘e' ‘!'t‘;'l" ’ﬁ.'. . 'G‘l‘ ll ..' ‘O‘ “ 'l ) I (3} A l..‘ .0 0'!.6 ) l" ,‘ K) '.6“ ..: '.a'."e. ,‘o"‘n'!‘&'t‘\“t W ( 0y " (AL N



gs.. T S W W Y R R P T O T P R T T O Y U W O N W O P v el T U PW T WT W W0y W R >y e ma Y S =
.

TIME = 0.00| ELEMENTS

u

455 TIME = 12.00 | ELEMENTS = 593

TIME = 4,00 | ELEMENTS = 1455 TIME = 16.00 | ELEMENTS = 893

TIME = 8.00| ELEMENTS = 501 TIME = 20.00| ELEMENTS = 1315

ORDER OF INTEGRATION-2 ORDER OF CORE-2

LAYER*13 BLOBAAYER'JS  S(GB<0.315 THIOKNESS+3.608 NPL.-0.0100 U.LENGTH-18.50




PrePTW gTLT  TErrRREFEVEMEVEETE ST T T
T T T

e [[IME = 0.00 { ELEMENTS

540 TIME = 24,00 ELEMENTS = 1172

ij TIME = 8.00| ELEMENTS = 540 TIME = 32.00 ELEMENTS = 2352

&
La
2 TIME = 16.00 | ELEMENTS = 682 TIME = 34.00{( ELEMENTS = 2718

ORDER OF INTEGRATION-2 ORDER OF CORE-2

f-, LAYER- 9 BLOBAAYER'O2 S(GB-0.300 THIONESS=3.520 ANPL.-0.0100 U.LENGTH=25.40

0 ‘~l

PIRY O OCA
T ¥ r 0 ¢ e SNLY DL W' ‘.‘ ‘AQ A
AU "‘n'.‘x":’l" AAOASAAGNON A N.“':“h IV -'l‘«‘l.‘ '0 t 6“ RONARD 3 'J"n' e ‘t' 'A"‘C'.“ ) O S AU ¢



[ IME

i

0.00 “LEMENTS = shp TIME = 18.00 {ELEMENTS = 1620

TIME = 8.00 }ELEMENTS = 732 TIME = 2U4.00 [ELEMENTS = 2649

'MME = 12.00 ’ELEMENTS = 1072 TIME = 26,00 t ELEMENTS = 3150

ORDER QF INTEGRATION-2 ORDER OF CORE-2

LAYER: 9 BLOB/LAYER'62 S(GB+0.%9@ THICKNESS+3.520 NPL.-0.1200 U.LENGTH26.40

‘w- E-, o, E& E&S a :-\-im ﬂ &wgm"ﬁkzﬁ




e g et e e aa s e San mos Sak And e it di et ol

5«\
1
3

F-’
2 4t

¢ s

P A
.:YJ.‘I

W,

<N

Py

[IME = .00 ' ELEMENTS = 810 TIME = 24,00 "ELEMENTS = 1123

|
| TIME = 8.00 ELEMENTS = 810 TIME = 32.00 ELEMENTS = 2143
i
|
\
|

[[ME = 16.00 ELEMENTS = 810 TIME = 34.00 ELEMENTS = 2556

CROER CF INTEGRATION-2 ORDER OF CORE-2

LAYER: D BLOB/ALAYER'9Q SICB-9.508 THIOKESS=3.2520 NPL.-2.0108 U.LENGTH=39.60

., v



29 F‘

”
JY.I

£ iy

e %

y XA

":
]

”

- T
s’:"':" .

LY

&

TIME

u

0.00 ELEMENTS = 810 TIME = 12.00 "ELEMENTS = 1268

TIME = H4.00 ELEMENTS = 878 TIME = 16,00  ELEMENTS = 1636

TIME = 8,00 ELEMENTS = 1092 TIME = 20.00 ELEMENTS = 2172

A N e oy

ORDER OF INTEGRATION-2 ORDER OF CORE-?

LAYER® 8 BLOB/AAYER'9Q S(GB*0.508 THIDAESS+3.528 NPL.<0.1000 U.LENGTH-39.60

Cadaaiwn 23 B B Jie RE RUR N N




ol ok au AR VAL Sl Ala Sa A Al -

k. Ba Al fa S 2s e ad Ak ok atdeiiiddhadefiade

-

| ¢
R

a

v

A
_

TIME = 0.00 ELEMENTS = 336 TIME = 15,00 ELEMENTS = 1237 )

|

A e N

St \(C?I\

|

TIME = 5.00 ELEMENTS = 483 TIME = 20.00 ELEMENTS = 1891

TIME = 10.00 ELEMENTS = 796 TIME = 25.00 ELEMENTS = 29114

CRGER QF [NTEGRATIQN-4 OROER OF CORE-2

_AYER* 7 BLOB/ALAVER-48 S(GB+0.600 THICKNESS-3.300 APL.-0.1200 U.LENGTH=13.20

X
dre

el B

PP R SIS ('J‘J'
< .

~I
- - - e e e e \ v . f R'\f
‘n . ” e 5‘ % et ,g{f_’g A :ﬁh.‘ha
)\f}fl‘vi‘})‘. .\)“:yf}-f:'_ :.'(‘ "Q" _p."’-\.'{ "‘.{P\ A \AA h\f&i&i@i}h&%b@.\h&i\aﬁ&*_ahhlb A

f
'r{‘-



1

: T I T
Y

g

m .

k

b

; i

b

b

b

p

w -

b

p

3

3

4

h

p

i -

o

p

3

p

p

f

w b—

3

3

b

h

3

h

3 L I ! 1
h

p <t Qv X2 Qo
" B
w (0
3

]

3

]

) ms- e 2 - - N g AP

\E-MA_MW.J . \ el L



THN TR TUE U TRl TRR Ty TR T, o= o

v

K

»

.

NN

"' .I " "J'

;
ﬁ
1
1
1
1
1
:

v >
P 1;.;? }J '1"1.’
e e e Ay Y-ty Ta

s
t
I (&) o N
[} wJ €
T — T

b 1

| 4

L
P S Y S S S

<
|
O (@) N
) O ©
¥ . v T T Ll
N A4 a4 P

TIME = 2.00Q0 TIME = 24.0001

6.9} ’ ] 6.0} ]

¥ L 4 y 3 p
3 1 3 1

5.0h ] 0.0} )

- 1 3 -

_ f 1 [ 1
T} 1 -5.0¢f 1

- N B
2.3 2.5 e 2.0 0.5 1.0
T T

JIME = 2.2000 IME = 32.0001

.2t 4 5.0}
J i 7 [
F L
SeCk J 0.0r p
L 4 + 4
. 4 - J
- Jr -H.0F 1
— M R
.t 1.5 T 55 0.5 1.0

T T
TIME = 15,2070 TIME = 35,0002

ORDER OF INTEGRATION-1 ORDER OF CORE-2

LAYER-13 BLOBAAYER'4+ S[CB-9.375 THIDKNESS-3.6080 ANPL.-0.0010 U.LENGTH=13.20

.
.
" it vate
) - .'Hd'l’ ™ L

; b R M L

- _ o aamw I I R Ty U v
et A AT AR ,
FOEALS Y S il JE PN S AL G RSP Syl g, s P




TIME = 4.0000 TIME = 24,0001

”‘.Or ] 6.0 F
L J y L
9 DL 1 0.0r- 1

TIME = 12.0000 TIME = 28,5001

ORBER OF INTEGRATION-2 ORDER OF CORE-2

LAYER-11 BLOB/LAYER'4Q S(CB-0.490 THIOKNESS-3.300 ANFL.-03.0180 U.LENGTH-1J.29

- N - D PSSR SN oW AL SN G I TR VA S
. - N I N T AL N SR A N e R L R AT Y AT Ry RO
ey i T e e e S D AR A R A

'\




LA Rk Rat ol ArreJyTar s Yoy ¢ o 20 2 m 5 F 7 07 T
w | 4.7 aa’ An sa- JRa‘oWa Jih ath o B o A i
 as A e at. e A o o g o b ek il Sk Ael

P SPPEFEFIVN. Lo w s

\ - — + —_— -r
e
!.J ~ :L 6 O.
3 )
l_"; 7 b b
Y Y
*J | y
o 4 o

'

I B N I
0.

5 .0 0.0 0.5 1.0
T T
TIME = 2.0000 TIME = 12.0000

TIME = 4.0000 TIME = 15.0000

5.0} | ] 6.0}

—r
7T

:
TIME = 8.3009 - yr A e

44444444

ORDER OF INTEGRATION-2 ORDER OF CORE-2 HESH-21x2] STATION-22

LAYER=11 BLOB/LAYER-4Q S(CB-2.490 THICKNESS+3.300 APL.-2.1800 U.LENGTH=13.29




LOG. OF THE INTEGRAL OF "“T-Tbase”

0.0012A

1

10 13 2l 23 30 33

TIME

40




YTV WY W W M7 WUt W iew e e s ewm e - = o

-
- e ~

v

PN
N

I 7

)
.
s

TIME = 0.00| TIME = 12.00

kY
N
~
\\
3
-
Y 74

’
v d r-
J4h
\
N}
\-1
~
\s
A3

TIME = U.OO| TIME = 16.00

LY
-
N
N
"f///
toei
1]
‘\
\
\\
4t
L]
., )
-7,
4 4

oA n
111 R - \y

20.00

TIME = 8,00] TIME

CROER OF INTEGRATION-2 ORDER OF CORE-2 HESH-2 1x2] STATION-22

LAYER-11  BLOB/LAYER'4Q SIGB+0.4+0D THIOKNESS=3.300  APL.-0.1800 U .LENGTH-13.20




“‘l".\:"ﬂ“"“"""\-""T
:
n
s
h\.‘
SN
v > r—
!
= ~L 15,0}
¥ C 1 y r
! ] L ]
J.3¢ T 0.0} ]
- - r
L ] L ]
_15_’3 W ’15.0' 1
Ll s . 1
0.0 6] 5 1.0 7.C 9.5 1.C
T T
L‘ 1 = 0.2000C a = 0.00100
15.0} ] 15.0t 1
y I ) y " 1
I r
0.0} 1 0.0t ]
L ] - 1
-15.0¢ 1 —15.%
R | N I I
0.0 0.5 1.0 0.0 0.5 1.0
T T
1 = 5.00001 a = 0.01000
13,9} 15.0} !
!
B4 f y f- |
S 0.0¢ ; 5
r ' f
| ; J r .
13,71k =15.0¢1 1
{ R 1 . |
‘ 0.3 3.5 1.0 0.0 0.5 1.0 |
\ T T |
[ x = 0.5021) x = 0.12000 B
CQROER QF INTEGRATION-2 ORDER OF CORE-2
"
! LAYER11 BLOB/LAYER-4Q SIGB-2.408 THIDKNESS=3.3080 APL.*0.1200 U.LENGTH=12.29

",
L




-—-v--u—--—----r-w-w-uvp—-“'u-u—-\vvw"'\r'- L ARa Ao -aka Ala il Al J T TR R YR T TR W e e “uﬂv‘w‘hv\1

20 - , , j |

5 a = 0.1
19 .

a = 0.01

INTEGRAL OF “T-Tdiffusion®

= 0.0001

22

TIME

\

5
/ -

"»‘ Y F.rvffvl" 'V“
Lm'xiﬁ O



-

Z.--
e

Iy ¥

.h
¥ :;f
o Appendix II
!
0 The paper on "Numerical simulation of a reacting shear layer using the
v transport element method" describes the formulation of the vortex element
e method and the transport element method for a chemically reacting flow with
“ finite rate of heat release governed by Arrhenius chemical kinetics. The
‘2 application of the method to a ron-reacting spatially developing shear layer
. and a reacting temorally evolving shear layer are presented.
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. is e eTrems ::: . 2,::' STEP. o6 IME- 6 08 GLOENTS. 36! 588
14" -
2 Whis€ ¢ IS Lne flanzarc ceviat:i0n of tne Gaussian
[ distribution tnat describes tne vorticity and the
it Sca.ar gralients, ang Z._ is tne nominel snear ’
' €
:{j <ayer inickness.  For the resulls an Fugure I, ¢
f{ = 1/26,4, leading 1o a most unstac.e wavelengirn,
L 4 re Sy tne . n of 1 L. wiinin S te e A SO0DTS Mm %
) n er temperature
\~ :
;i s convect
}; gomair.,
- five el
o
|
N giscretize tnis vorticity rng E5. (1C,. Tne T % poenm T W
® potential velocity componern u_, is computel by
v 1
\f. adling IwWe source flows &t X = -« ans y = ¢l ant y .
o = -0 Lc the velocity fielc 1in Eg. (2 to =atisfly
sj tne bouncary conIition at x = . Tne nc=f.ow
) bouncary conZition across the 80lid walis is
‘*: 1mp;emeite: Dy using conformal. Mmapping anc image Fxgurf 2- The develgpment of ;arge =
Y . - siructures in a spstia. shear layer
vortices ., At the downstrearm side of tne in the figure represents a vortex e.em
‘ COmputationzi window, at X = €, VOrLex eiements line 1= the veiocity vector
o are ge.etec. Tnls indutes a SLTONE perturdatlion
‘\i whicn ensures tnat tne rollup ans first pairing
" will always taxke pliace witnin tne computational
Rt window. Since this perturbation 1§ not appliec in
lﬁu an organized manner, the resulting snear layer
"y wW.il be considerec as arn unforcec layer. Quantitatively, the natural frequency cf
p Figure 2 shows tne location anl vejiocity of shedding, is defined as rn - Up/;' where U_ =
a.. vortex e.emenis usel 1In the ccrﬁuza:ions for (U1+U2)/2. and 3 is the wava‘e; cr of tre o
o five time steps. The time step of tn eday The oo JEaCnELR O M€ LSTET
2 compatations is AU = C.15. Tne plote ex'xb;: a dy. e corresponding Strounal number is 5=
'él very clear and accurate portrait of the roliup. 1/rn- 0.033. This is the same valiue as the
|ﬂj buring rollup, the voriicity witnin the snear frequency or the most unstable mode COmput#l fror
:U layer is attr;ctef towards the center of a large the linear stability theory of a Spatially
' eday, entraining fiuic fros botn siges, anc developing hear layer under the CONCit1Ons
® rorm.ing what appears to be a moving focal point of described above. Preliminary results for tng
- a epiral. Betlween neignboring liarge edgies, a growth rate, average ve.ocity and
e zone of strong strair is developing where the turbulent statistics were presented in study of
vorticity is depleted and the gradients are 7
- growing. This "braids" zone can be deacribecd ac a Gnhoniem and Ng for the forced snear layer.
-, moving saddle point where locally the fluic flow The high resolution of the transport eiement
\.j experiences a Separa:ion into two sireams; one method demands the use of a large number of
Sail moving towards the ieft ang the other moving transport elements. Moreover, the number of
towards the right with respect t0 the saddie elements grows rapidly with time Que L0 the severe
stagnation polnt. Downsiream, the process of atretch produced in the shear layer. This maxes
rcllup continues until a stronger perturbation the computation of a wide window which containg a
NG forces two neighboring eddies to interact 1in a number of auccesgive eddies expensive. In the
e pairing process, It is important to stress that next section, we direct attention towards a mole.
y the algorithm of inserting elements as the etrain of this problem that reguires less effort
o field develops i® responeible for maintaining the computationaily while easentially preserving ai.
’2. organ:zation of the ca.iculation for a long time, the physical processes involved in the spatially
" b developing layer. This is the temporal shear
> layer model in which a computationai winaow tha:
-, moves at the average speed of the flow is impose:
L or a fingle wavelength while the eddy 18 growing.
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V. TEMPCRALLY-DEVE

Computatliona. resulils anNOwing the evgo.ulion
of & large edly 1n & lempdra. Shear laver are
presented in Figure 3. In this cdase, tne boundary
conditions are period:iz, l.e
WiX*a,y,l; andé u.x,y,>’ = uXx*s,v,l. , wne
the waveiengin of tne perturbaticn. 3Sin
getalield analyes:is of tne evolutlian cf tne
temporal, thermally strat:fiel snear layer was

presentec in Choniem et a.. ", it will not be
repeated here. 7Thne GQua.ilative resembl.ancs
between the development of large eddies 1in a
spatial and a temporai Sshear layc<! 15 Clear.y seern
by comparing Figures 2 and 3. Moreover, the
anedding fregquency, :.e. tne freguency of the mos:
amplified mode, is almost the same in both case,
However, the growth rate of tne perturbatior is
different since it depends on the ve.oCcity ratio
across the layer; a parame=ter tnat coes not appear
in the analysis of the temporali layer.

In tne computatiorn of Lne temporai layer, the
window is limited tc one wavelength ancd one car
affors tc use more clements within the domelr to
1mprove the resoiuticn, Jne can alisc conduce
inexpens.ve.,, parameir.c studizs on tne eff
various physica. parameiers thit appear in &
modes, Egqe.(1-%,. Tnus, the tempera.l iayer wi.i
be used as a mode) for the Spa .

tial layer to stuldy
turbulence-combustior. interactions in ahedar flow.

TIME =« 0.00

TIME = 8.00 TIME « 2C.0C

Figure 3. Tne development of & large eddy 1in a
temporally groming =hear layer at the =same
conditions as in Figure 2.

Since the flow {n unconfined, the wavelength i {=
used instead of H to non-~dimensionalize the
length.

Tne temperature profile acroes the midsection
of the eddy is exhibited in Figure 4. The roliup
bringe fluid from one s=ide to the opposite eide,
while stretcen increases the gradient across each

T el
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3

X = €6.€,

X = 6.6, TIME = 8.0C

Figur

¢ <. Temperature CIiSLrioution an
migeect:

" -
or. of the large eddy shown in Figure z

layer. Tne profilies show that after in
re.axation of the first rollup, a sec
InElabiiily develops which forces the
another turn, thus creating a more ra
temperature disiripution. Moreover,
2een that tne rollup of the =hear .ay
mecnanism of entralnment that jeads (o stirong
miXing ennhancement as the two fuulcs ¢iffuss
across the stretchec interface., Since ri.iuf is
assoclated with strong stretch that reduces the
tnickness of tne material layers, it increases tre
gradients across these intertwining layers, thue
ennancing the diffusion fluxes. Quantitalive.y,

2 M o~ n

the rate of mixing can be expressed as ¥ o= Q. n
da, where q is the diffusion flux, n is the un::
vector normal to the material surface, and da is
the surface area element. Since for twc
dimensional flow, da = dl, and since ¢ / 6. =

constant, then M is proportional to (§.)°. Tne
net resuit 1s that stretch by a factor g ennances

"

mixing by a factor Le. The quadratic rise 1
mixing during rollup will have a significant
effect on the rate of reaction.

In the reacting layer caliculations, the fu..
system of equations {s integrated using partic.es
that transport vortex elements, temperature
gradient elements, reactant and product graglents
elements, At time t « 0, the vorticity layer ang
the flame front coincide, and the thicknesses of
the vorticity layer as well as the temperature an:
8pecies concentration within the layer are taker
to be equal. A esmall sinueoidal perturbatior witn
amplitude ¢ = 0.05 A is imposed on both
distributions., The first case to be computed
corregponds to the foliowing set of parameters:

- 0 . - - T u .
Pe 200, Le 1, Af ., Q 4 and T 10, and n 1.
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rollup proceeds along with the Cremila. readLion.
Al lne €a”ly Slags®, Lhe eCly Sirong.y recemiles
tnat cf tne nonreariling Tl0wW sniwn in Fligure 5.
However, as rollup starts, tns following it

Time = 0.0

Time « 17.54

Figure 5. Tne ageveiopment 2f & .args €ady 1o a
reacting temporal ghear layer at the cane
concitions as in Figure 3. Tne sgo1c Line deflines
the flame front.

obgervec: (1) a awel.iing, due tc the concomitant
increase in the rate of nea% release, continues as
more reactants are entrainecd 1nlo the burning
core; (2) the growth of the instability, as
measured by the angie beilweer tne major ax:s of
the elliptica. structure and the main stiream
direction, 18 encumberel becauss the volumeiric
expansion causes the vorticity intensity to
decrease and the eddy Lo become weaker anc lees
coherent; and (3) the eddy loses jite symmetry and
becomes eccentric due to the asymmetric expansion
and the generation of a non-baroclinic torgue
associated with heat release. As more of the
initial core 12 burnt, the fluid inside the eadly
ceases tc 8pin, contrary toc tne nonreacting case,
Meanwnile reactants move through the =side to enter
the reaction region. These results agree
qualitatively wiin the experimental results of
Keller ana Dally” on the reacting mixing layer at
high equivalence ratios.

On the same figure, a 201id line ie plotteg
through points of maximum reaction rate. The 'ine
indicates where the flame fron:, or the maximum
heat release rate, is within the shear layer.
Below thie line, the product concentration
approaches unity and the temperature reaches Tp

During the early stages of rollup, the line of
maximum reactlion rate foliows one of the material
lines cloaely, i{.e., the growth of perturbation

‘P .‘ Ny,
By 8T Py ¥y Wy 4 0%y

Produvis wnere
burn. Be.ow thic 1)
core almost stlops 1tcs
0T burring of tne ez
4rn Lo Cilose tnis e
outl ol tne esay an:
flame,
Tne effect of n
of the edzy, wnicn it
N SNEaT Layer, Carn
profi.es across tne micse
Figure C. Since tre

[ Tﬁc’,. As reactan:
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Figure £. Temperature distribution across the

midseciion of the reacting large eddy shown ir

Figure 5.

core of tnhe growing eddy from the right side, a Z-
shapec flame is formed. At the initial stages
where the rate of entrainment 15 faster tharn the
rate of burning, the flame extends deeper into the
lower stream. As the reactants within this zone
burn, heat is released within the core of the
rotating eddy, causing the eddy to swell, wnile
maintaining its elliptical shape. The non-
baroclinic vorticity generateg around tnhls zone
caugses the observed eccentricity of the large
edcdy. The temperature profiles show that the
higher order inatabilities ob=aerved in the
nonreacting case are suppressec by the heat
reiease, and that the core of the eddy stops its
rotation. As the reactants within the edcy bdurn,
the flame leaves the structure and moves into the
reactants., This results in the formation of a
temperature profile which is very similar to the
temperature profile at t=0.

To sludy the effect of the =hear laye~ or. the

chemical reaction, we compare the rate of burning
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Figure 7.

Total mass of procucts Mp formec =ince

-t = (, 1n the reacting shear layer, labe..eC as

RSEL, and in the laminar flame, labelled as LF, at
the =ame cona.tions, and the totai jiengtn of the
flame in the reacting shear layer of Figure 5.

anowing clearly the different astages of burning in
tne reacting shear layer. Al the early 3stages,
during the linear phase of development where the
stretch 1s negligibly =mal., the rate of burning
is linear anc 1identical to that of a laminar
fiamz, As the layer starts to roll up, the area
of the reaction surface increases and the flame is
convojuted around the growing eddy. The increace
in the flame area due to convolution is nearly
linear, as showr. in Figure 7. However, as
indicated by the Figure 7 , the products form at
almost a quadratic rate during this stage. Tnis
phenomenon can only be explained by recalling that
mixing ie enhanced as the square of the stretch,
and that {n this case of fast chemistry, the rate
of burning ie governed by mixing.

AL later stages, around 1t = 20, the amount of
products forming is almost nine times that which
forms in the laminar flame. Due to flame
convolution, the reacting surface area has
increased by three foldes. Since stretching a
layer of material by three times its initiail
length decreases its thickness by the same amount,
and the fluxes across it increase by three fold as=
well. This augments the rate of mixing by nine
times over the non =tretching case. When the
chemical reaction is fast, as in this

cafe, the material mixed reacts and the
rate of reaction increases by the same rate as the
mixing. Tnie i® what has= been labelled "mixing-
controlled reaction” in the turbulent combustion
literature.
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Figure 5. Tne temperaturc 7, Sira. lfals £, =°_

eXpanslon rate e a.ong layer 7 ir the reactling
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Tec furiner analyze the resu.ts, we .21 17

.
temperature 7, the strain rate £, ant rel: !

expansion é, along one particular layer <f f...i:
within the reacting eddy. The rate of expans.X
is an indication of the rate of proguct for
i.e., tne actual reaction rate. Figures § anz -

]
.S*ﬁ"ﬁ‘
é
°1
L
Figure 9. The temperature 7, strain rate ;, anc

expansion rate e along layer £ 1n the reacting
eddy.
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anow these plots for layers ans 5, respetilively,

which are showr in Figure 10, Figures § anc Y
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Figure 11, Tne ecdy in a reacting temporal shear
layer at tne same conditions as in Figure 5 but

witn Ar = 0.5, t = 17,57,

curve and vice versa. Moreover, Figures 8 and

9 exhibit a strong correlation between the local
ayrain rate and reaction rate; as the strain rate
decreases, the reaction rate decreases and the
temperature drops. These results indicate that
tne rate of burning and temperature are positively
correlated with the girain rate. As the layer
stretches, the diffusion flux of tne reactants
into the flame increases and, Since chemistry is
fast, the rate of burning increases. Under
compression, the reactants diffusion fiux is
reduced and the amount of burnt mixture, and hence
the rate of expansion, i= reduced.
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v
Since U= [ fUr e reaciing fnhes” L1aysr wilt A, =

.8, RIL, anc e

congditions, LF.

wn
N
[AV]
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-

Figure '3. The total mass of products hd
e

cince L = O fOr a reacting snear layer wilh f, =

0.25, RSL, and a laminar fiame at the sam¢

cong.ition, LF.

parameters shows a continuous linear rise in the
mass of products, If tne frequency factor 1s

lowereg further to Ar = 0,25, extinction occurs

earlier at around t = 10, as shown in Figure 3.
Meanwhile, the corresponding laminar flame shiws 3
linear rise 1n MP. Since the strain rate

increases with time, the extinction phenomenon i<
encountered earlier as the Damkohler number i
reduced.

To explain what happens arounc extinction @~

more detail, we refer to plots of T, &, and e,
shown for layer 3 in Figure 14 and for layer 3 :n

Figure 15, both for Ar « 0.5. The plots exh:iuil

the variation of the three parameters al U =
17.57. The geometry of the twd layers is shown in

Figure 1€, Plote for ¢ show that the expansion
has almoat stopped.
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Figure 14, The

expanslon rate € along layer 3 1n the reacting
edcy 1n Figure !
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Figure 15, The temperature T, etrain rate &, and

expansion rate e along layer § 1n the reacting
eddy in Figure 11,

Tnis is in spite of the fact that T corresponds to
maximum reaction rate along most of the layer.
Contrary to the case of Ar « 1.0, the values of T

and s are now negatively correlated, i.e.

temperature maxima correspond to minima in s as
shown in Figures 14 and 15 . It {is also observed

that = and e are negatively correlated, leading to
a sftuation in which strain acts to extinguish the
flame. Thi#® indicates that the temperature drope
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Figure €. Layers 3 ant 5 1in the reacting eil, .-
Figure 1%,

Wwith strain due to the increase of the heal ..
out of the layer and tne reactants f.ux 1nL. tn
layer. Since chemiCa. reaction is S.0w, LnE nEst
1oss anc the gairn in reactants cannct be
compensatec by chemical neal releare, L€aling Ll

flame D.OWOUL.
V.. CONCZLUSIONG

Advanced numerical methods enatle one tI: i°
integrate elaborate and detallec mos<.e, WhliTh
cannot be done analytically, Sc that comp.ex
mecrianisms may be revealed and analyzel; anc ..
provide detailed information about tne flow fis.c
wnich may not be possible usging traagitionz.
experimental techniques. Computer outlput, ricn ir
data, offers a chailenge in how to exiract
valuable information about the phenomena under
investigation, and how to preseni these
information in compact form. Finding out in#z
appropriate diagnostice to probe computationz.
results is half the way to reaching the
conclusgions,

In this article, we have introduceg the
transport element method; a Lagrangian particie
acheme based on the discretization of the
vorticity and the gradients of the scalars intic
finite eiements. The particles move along
material lines, in accordance with their transport
equations. As strong strains develop in the
dynamic field, the finite elements may change
their shape or configuration to accommodate the
distortion which is produced by these strain
fields. In case of chemical reaction: (1, the
strength of the elements, i.e. the source
strength, changes according to0 the rate of
reaction; and (2) the chemical heal release
induces volumetric expansion and non-baroclinic
vorticity into the dynamic field.

The simplest model which can De proposed io
study turbulence-combustion interactions contair,
five parameters: (1) the Peclet number which
defines the ratio between the rate of convective
and diffusive heating; (2) the Lewis number wnicr
represent the ratio between the rate of heal an:
maas diffusion; (3) the frequency factor which
defines the rat.o between the rate of cremical
reaction and mass convection; (4) the activation
energy of the reaction; and (5) the enthalpy of
reaction. The outcome of these interact{ons can,
thus, be presented on a five dimensions ®pacy O~
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Appendix III

The paper on "Vortex-scalar element calculations of diffusion flame

stabilized on a plane mixing layer"

describes the scalar element method and

its application to a diffusion flame with low heat release.
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" ABSTRACT moce.s and in obtaining results thit are in
\ agreements witn experimertal as.r BB
L5 The vortex—scalar element method, a scheme However, in complex systems, tling  is
S wr vortex  elements to discretize the difficult bezause of our lack Of knowledgs orn tne
A reg 1oty and  scalar elements to detailed dynamics of the flow., Furthermore, sinc:
\:r: rep or temperature fields, |is most of the interesting dynamical benavior of the
f\-. ut: americal simulationg of a two- flow~ is modelied a priori, such features are not
L(' ol o mixing layer. Computations exhibited from the results of numarizal
are a diffusion flame at high computations based on turtulence models, arnl thus
S Rey numhers without resorting to ¢can not advance our understand.n £ turbuylent
Ko tur n  thne non-reacting flow, the combustion.
s me3a o profiles of a conserved The progress in numerical methods ar? the
::4 scalar agreement with experimental availability of supercomputers have had a msicr
'#? me2asurem esults for the rea-ting flow impact on turbulence research. Improved accuracy
e indicate fer temperature~independent of the numerics and increased storage an:
Lot kinetizs, the cremical reaction begins immediately computational speed have made it possitle to sc.
.- downstream of ‘tne splitter plate where mix;ng the appi‘opr‘iate ~ transport eguations governing
v starts, Results for the reacting flow with turbulent combustion directly without the need for
.\:: Arrnenius kinetics show an ignition delay, which modelling for some limited parameter range. Such
’;:. depends on the reactants temperature, before m>del-free "simulations," in  comparison with
‘“f. significant chemical reaction to occurs. Harmonic calculations utilizing turbulence models, have the
“; forcing changes the structure of the layer, and advantage that the physics of the problem is not
N concomitantly the rates of mixing and reaction, in modelled a priori, but 1is recovered directly frorm
[y accordance with experimental results. Strong the computed results. Their results can be used
( stretch within the braids in the non-equilibrium to understand many  important mechanisms of
- kinetics case causes local flame quenching due to turbulent transport and its direct influence on
G the temperature drop associated with the large chemical reactions, Furthermore, since the
- convective fluxes. instantaneous behavior of the variables are known
- at all points and at all times, accurate
}x: simulations offer a good method of probing the
,..?' I INTRODUCTION flow when experimental techniques may fail.
" Ultimately, by validating the results of the
(:) Turbulent diffusion flames have been the ?iTz}atlo:d?g::nst f;ge;imentall'measurements, ab
N subject of extensive experimental and theoretical nitioc predictions w € a reality.
‘ ﬁ\ investigations during recent years (for a review, Numerical methods have been used in a variety
o see Bilger [1]). In most of the theoretical work, of forms for the simulation of turbulent flows in
R~ turbulence models are used to close a system of complex configurations. A recent survey can be
"{;‘ averaged transport equations which describes the found in review articles [9,10]. In reacting
i statistical behavior of the aerothermodynamical flow, three approaches are used: (1) finite
variables. Moment methods [2], eddy break-up and difference methods, (2) spectral methods; and, (3)
W mixing controlled models (31, flame sheet vortex methods. In the first approach, the
- approximation [4], assumed probability density variables are defined on a grid and the transport
T function (PDF) shape methods [5], solutions based equations are approximated by discretizing the
AN on modelled joint PDF of scalar quantitiesﬂ[6,7], derivatives on the grid nodes. Examples of this
e and based on modelled joint PDF of scalar and approach can be found in the work of Corcos and
- velocity [B] are examples in which turbulence Sherman [11] who used a projection method to study
Rl modelling have been used for the closure of the temporal evolution of a periodic shear layer,
equations governing the statistical quantities, and in Grinstein et al., [12] who used a flux-
v Much effort has gone {nto constructing accurate corrected transport scheme to simulate the
‘. development of coherent structures in a two-
- dimensional spatially evolving shear layer and
fm examined their effect on mixing.
R Copyright @© 1987 by A.F. Ghoniem, Published by
,{W_ the American Institute of Aeronautics and In spectral methods, the variables are
“ Astronautics, Inc. with permission. expanded {in series of harmonic functions that
3 . satisfy the differential equations on a number of
Associate Professor, Assoclate fellow AIAA. collocation points, Riley et al. [13]) used a
™ pseudo-spectral scheme to study a three ‘
Research Scientist, Flow Research Company, dimensional temporally-evolving reacting mixing !
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Jnemical Tion and  constant nsity to assess
the effe: of large coherent Structure on the
loz ticn of the flame. E Lo
so ving layers was {nitiated by Givi and
Jo B sing a hyrrid pseude-spectral secon?
orde~ finite cszeren:e scheme. In all cases, tre
Reynolds rnumrer was kept a%t small values, 20107,
lim:ted »y tne grid resclution anl the number of
ha~monic modes

In the thirgd a;proach, vortex methods are
used., Tnese scnemes are grid free, the transport
of trne va"xable= take place in a Lagrangian form,

and the soluticn is not restricted by the geometry
of tne confinemant, Therefore they can provide
aczurate simalations  for nigh Reynolds number,

ows. Moreover, vortex methods
tional efforts by distributing
around regions of high
on  of tne metnod in thin
ns with a finite density

Ghoniem et al., [17] and
Sethian {187, ar others. In these
calculations, the method was employed to
compute the flow field, and the dynamic effect of
combustion was represented by the propagaticn of a
thin interface at the laminar burning velocity
acting as a volumetric source.

Vortex methods were also wused in simulating
diffusion flames in connection with a finite-
difference approach for the treatment of the
scalar variables., Ashurst and Barr [19] used the
vortex method to compute the hydrodynamic fieiz
and an Eulerian flux-corrected transport algorithm
to compute the diffusion and convection of a
conserved Shvab-Zeldovich scalar approximating the
shape and convolution of the flame in the limit of
infinitely fast chemical reaction. Lin and Pratt
[20] used the random vortex method to simulate the
large-scale motion and a Monte-Carlo method to
calculate the time-dependent probability density
function of the scalar quantities for both gaseous
and acqueous mixing layers. The PDF transport
equation, however, required a closure model for
the molecular mixing term.

From this short review, it {s clear that
numerical simulations have played an important
role In elucidating the physics of turbulent
reacting flows, and that there 1is a continuing
need for more model-free simulations {n order to
explain better 3some of the interesting physical
phenomena that have been observed in laboratory
experiments,

In this work, we extend the vortex method to
study non-premixed chemical reactions. A vortex-
scalar element method is developed to treat both
the hydrodynamic and the scalar field In a
Lagrangian sense. The fact that a chemical
reaction {s truly a Lagrangian process, i.e., it
occurs when the particles (or macroscopi-
elements) interact as they flow, motivate the

spatially grow!l
optimize the <o
computational
vorticity. Tre ap:
premixed flame calc:

r

jump has been repo

{mplementation of Lagrangian methods For
simulations of high Reynolds number res-iep
flows., The method {8 cagable <7 ma-41l17% 1 o °
variety of initial an? ATy it e g

not limited to s jie floa Lt o

N

alltws similations of flow with er Fe
and Pwrlet numrers In this paper, con”
or. tne fermalaticn f  the model anz ny

schemes, and present some prelimi val
studies and interrrstations of the res.lits.
Irn Sectior 11, the geomstrical confi:

of a spatially evolving mixing laver is -

ard the form.lzition of the prcib.er an
scheme are des.ribed. Fesults of som
calculations are given in Sectio
Computations of a non-reazting mixing

performed first in order to chectk on the

of the method by comparing f{ts resul
experimental measurements at the same Con

Preliminary results of a simulation of a rea2v:
mixing layer in whizh the twy reaftants

introduced in different streams are presented
next, Both constant rate kinetiecs and temperature

dependent kKinetics are considerec¢. 1In both cases

the influerce of the coherent strulttures on tne
finite rate chemistry is assesseZ ard |in the
second case, the non-ejuilibrium effects {n the

reaction rate are examined. In the constant ra

kinetics calculations, the (influence of harmori

forcing at the inlet of the mixing layer

ve
iz
is

{nvestigated, This study was motivatel by recent

experimental observations of Roberts ang Roshe

»
sl

[21]) and numerical computations of Shoniem and

[22]. The paper is concluded in Section IV with

summary of our new results and suggestions fo

future developments,

I1 FORMULATION AND NUMERICAL SCTH

A two-dimensional, confined, planar mixi

layer is considered. A schematic diagram for th

flow field is shown in Fig. 1. Twe initial
unmixed reactants, fuel F and oxidarnt 2, a
present at small concentrations in the to

speed stream and bottom low speed s
respectively, We make the following assumpti
(1) the heat release is low so that its effec:
the dynamlics of the flow s negligitie; (7' ¢
Mach number is  small: (3) the free
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(U) the molecular diffusivities are ez.x:
constant; (5) the viscosity is the s:=- .+ »
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and 0 1is single step, ({rrevers:.-.
order, The density is, theref:
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the transport equations of the hydrodynamic field
and the scalar -- temperature or species -- fields
are decoupled. The equations governing this
system are:

K

F+0 --» P (1)
2

V¢ = - wix,t) (2)
LRI M T (3)
oT 1 2 o
3t +u. V= Te VT + QDaWw (4)
ac
— - — 7% - X

TR VcJ Peie v cJ Da W (5)
ic_Po Ve --—1—V2c + DaW (6)
3t Y " " PerLe® °p

where P indicates products and W= CFCO exp(-

Ta/T) is the reaction rate, written in terms of
the rate of generation of products per unit mass.
u= (u,v) is the velocity, x = (x,y) and x, y are
the streamwise and cross stream directions,
respectively, t is time, ¢ is the stream function
defined such that u = 3y/3y and v = - 3¢/3x, w = ¥
x u is the vorticity, ¢ is the concentration per

unit mass, T is temperature. V=(3/93x,3/3y), and

vz-az/axzoaz/ayz. Variables are non

dimensionalized with respect to the appropriate
combination of the total shear aU = Ul- U2, the
channel height H, the free stream concentration of
F, Cro? the free stream temperature at x = 0, To.

InEq. (5), 3 = F or 0 for fuel and oxidizer,
respectively. Re = aU H/v 1s the Reynolds number,
where v is the kinematic viscosity. The reaction
rate constant k = A exp(-Ta/T) where A is the
frequency factor, and Ta {s the activation energy,
non-dimensionalized with respect to (RTo), R being
the gas constant. Q 1is the enthalpy of reaction,
non-dimensionalized with respect to CpTo, where Cp
is the specific heat at constant pressure. Pe =
aU H/a is the Peclet number, where a is the

thermal diffusivity. Da = A ¢ ° H/aU is the first

F
Damkohler number. Le= a /D is the Lewis number.
Since Eqs. (4), (5) anda (6) are similar,
there is no need to solve them all if the scalar

concentrations CF' co and cP are normalized in

such a way that their initial and boundary
conditions are identical. This is accomplished by
the use of Shvab-Zeldovich transformation [1].

Introducing conserved scalars BFP - cF0 cP. and

BOP' 1- (co- cp). we get:

38
— -t ¢
TR VBJ Fe Le v BJ (n

for j = FP or OP. Since BFP and BOP have the same

inftial and boundary conditions, BFP' KOP' 8.

The finite rate kinetics effects can be taken into
account by considering the transport equation for
the product of chemical reaction, Eq.(6), and Eq.
(7) for a conserved scalar. If the Lewis number

! :: 1’3‘:,’!335.:'3..‘ O.g“’m."‘.t‘i"’( “E(
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is unity, another conserved scalar can be
introduced, BPT' cP- T/Q, and the solution of Egs.

(6) and (7) for cp and B will determine the
behavior of all the scalar quantities, CF’ e

c,, and T.

P

I1.1 THE VORTEX SCHEME

In the vortex method, the vorticity field is
represented by a finite number of vortex elements
of finite cores:

wix,t) = T r1/62 £(x - x,) (8)

where r1 = [ w dA, {is the circulation of a vortex

element and & is the core radius, while x, 1is the
center of the element. f represents the vorticity
distribution associated with a vortex element, or
the core function (Chorin [23] and Hald [24], and
Beale and Majda [25]).) The velocity field is
obtained by solving Eq. (2) wusing the discrete
vorticity distribution:

ue=_lx ri K(x-xi) x(x—xi) + up (9)

where K(x) = -(y.-x)/r2 is the kernel of the
Poisson equation, x(x) = f r f(r) dr is the
circulation within r, and r =« |x|. u, is an

irrotational velocity field added to satisfy the
potential boundary condition; up = V¢ where v2¢ =

0 and u.n = 0 on solid boundaries while u.n = U at
the inlet, n is the normal unit vector. For the
confined shear layer, the boundary condition at x
=0 is: u=Ul for ¥y > 0 and ue U2 at y < 0,
while y = 0 is a vortex sheet of strength aU= Ul-
u2.

In this work, we use Rankine vortex elements,
i.e., the vorticity of an element i{s constant
within the core and zero outside, f(r) = 1/« for r
S 6 and f(r) = 0 for r > §. Correspondingly, x(r)

- rZIZw forr S 6§andc = 1 forr > §. Moreover,

the potential velocity field 1s obtained by
conformal transformation. Thus, the physical
plane is mapped onto the upper half plane and
image vortices are used to satisfy the potential
boundary conditions. The form of the mapping
function for the confined shear layer is given by
Ghoniem and Ng [22].

The motion of the vortex elements must be
constructed such that the vorticity field
satisfies Eq. (3). This is accomplished by
solving this equation in two fractional steps:

Convection: %% + u.Vo =0 (10)
) 1 2
Diffusion: —‘: e ()

In the first step, the convective transport
of vorticity is implemented in terms of the
Lagrangian displacement of the vortex elements
using the current velocity field computed from Eq.
(9). In the second step, the solution of the
diffusion equation is simulated stochastically by
the random walk displacement of the vortex
elements according to the appropriate population.
Thus:

xl(toat) - xl(t) + ﬁ u(xlk)at * 0y 12)
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for { = 1,2,...,N, where [ K is a k-th order time-

integration scheme and ny is a two dimensional
Gaussian

random varjable with zero mean and standard
variation /2at/Re. For more details, see Ghoniem
and Ng [22], Ghoniem and Gagnon [26].

The no-slip boundary condition at the walls
is satisfied by generating new vortex elements to
cancel the induced velocity by the vorticity
field. Here, we generate vorticity only at the
point of separation, i.e. at the tip of the
splitter plate since the growth of the boundary
layers along the channel walls at these high
Reynolds numbers 1s small. At each time step, the
new vorticity ar = =al Um at, where Um e« (U1 +
U2)/2, is consigned to No elements of strength
aT/No and added to the field at points ax = Um/No
apart downstream of x = 0.

The effect of the numerical parameters on the
accuracy of the results was investigated by
Ghoniem and Ng [22]. Their results emphasized the
importance of using a high order time-integration
scheme with k=2 to avoid excessive numerical
diffusion in the vorticity field. The value of No
= 6 was also found to be appropriate in order to
obtain well-defined eddy structures after the
rollup and the first two pairings. The second
pairing is accomplished within the domain of 0 S x
S 6, therefore the computational domain was
limited to Xmax = 6. Downstream of Xmax, the
vorticity was deleted. Varying Xmax showed that
the effect of deleting the vortex elements
propagates about one channel height upstrean,
hence the results are accurate only for 0 S x S 5.

I1.2 THE SCALAR ELEMENT METHOD

In this scheme, which is a two dimensional
extension of the random element method of Ghoniem
and Oppenheim [27], the scalar field is
represented by a set of elements each carrying a
finite amount of the scalar field:

s(x,t) = L s, 6(x-x1) (13)

where s is a scalar field, being the temperature
or species

concentration, si is the strength of an element,

defined as the amount of scalar carried by this

element and &§(.) is the Dirac delta function. s,

= 1/8A [ s(x,t) dA, where SA = §x68y, and 6x and &y
are the distances between the centers of
neighboring elements in the streamwise and cross
stream directions, respectively, and Xg is the
center of the element. If s is an active scalar,
its transport is governed by:

3s 1 2 o
3t +u-Vse Te Vs + W (14)

where Se is the ratio between the diffusive and
convective time scales of transport of s, Se = Pe
for s =T, and Se= Pe Le if s=c. In the scalar
elemenit method, this equation 1is solved in three
fractional steps:

9s

Convection xuC Us « 0 (15)
e 1
Diffusion o= 5oV £ (16)

Reaction £ \7n

Convective and diffusive transport are taken
into account in a similar way as in the vortex
method, {i.e. by the Lagrangian motion of the
scalar elements using the velocity field wu,
computed using Eq. (9), and the random walk
displacement of the elements using a set of
Gaussian random variables with =zero mean and
standard deviation v2at/Se (Ghoniem and Sherman
f281.) 1r x; 1is the center of the element i,
then,

xl(t+At) - xi(t) + I “(‘1k) at + n, (18)

Chemical reaction changes the amount of
reactants carried by the element according to the
integration of Eq. (17),

s (teat) = s.(1) W at (19)

However, the reaction occurs only when the
elements are close enough for molecular mixing to
affect their composition. Therefore, at every
time step, the distance between the centers of

each two elements of F and 0, oy, -Ixi-xj|,is

computed. If Axijs GD. where GD-O(1/ Se) is

the diffusion 1length scale, the composition of
each of the two elements changes according to Eq.
(19). The 1initial distance between neighboring
elements must be small enough to allow enough
interactions between the elements. This limits
the maximum value of the Peclet number that can be
economically used in the computations to 0(1000).

The scheme, while providing an approximate
solution of Eq. (12) in a stochastic sense, mimics
closely the actual physics of the reaction
process., This is achieved by using the lagrangian
formulation of the transport equations and dealing
with the chemical production terms in individual
particles.

II1 RESULTS AND DISCUSSION

The computer code, developed by Ghoniem and
Ng [22] for vortex simulation of a non-reacting
shear layer, was vectorized in order to take
advantage of the computational capability of a
CRAY-XMP. The scheme, being explicit in time and
requiring mostly non recursive computations, can
utilize this capability efficiently. The dynamies
of the non reacting layer was investigated in
detail in the work of Ghoniem and Ng [22]. Here
we concentrate on results pertaining to mixing and
to a chemica.ly-reacting layer.

III.7 NON-REACTING MIXING LAYER

Results of a typical simulation, presented in
terms of the velocity and location of all vortex
elements used in the computations, are shown in
Figs. 2, 3 and 4 for the cases of Re = 24000, Re =
4000, and Re = 1000, respectively. Each vortex
element is depicted by a point, while its velocity
relative to the mean velocity is represented by a
line vector starting at the center of the vortex
element. The velocity ratio across the layer at
the inlet is U2/U1 =« 1/3,

) o N . r- .
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Figure 2. Vorticity field at Re = 24000,
uz/n = 1/3.
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Pigure 3. Vorticity field at Re = 10000,
u2/u1 = 1/3.

Results show the formation of large vortex
eddies by the rollup of the vorticity layer that
emanates at the splitter plate, and the subsequent
pairings of these eddies into larger structures,
The rollup of the shear layer was investigated in
Ghoniem and Ng [22] by analyzing results at a wide
range of the Reynolds number and at different
boundary condi{tions. Their analysis show that:
(1) the rollup s due to the growth of
perturbations by the Kelvin-Felmholtz instability
mechanism, and the shedding freguency corresponds
to the most unstable frequency predicted from the
linear stability analysis of a spatially growing
layer; (2) pairing, which 13 assoclated with the
local subharmonic perturbations, results {n a
step-wise increase in the size of the vorticity
layer as two eddies merge; (3) The two sources of

the subharmonic perturbations are the downward
motion of the layer and the monotonic growth {n
the size of the eddies downstream; (4) the
intrinsic dynamics of the {nstability {s not
strongly affected by the value of the Reynolds
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Figure 4. Vorticity field at Re = 4000,
vz2/m1 = 1/3.

number, except that at the low Reynolds number the
eddies are slightly larger due to the dispersion
of vorticity by diffusion; and (5) the computed
velocity statistics show good agreements with
experimental data, indicating that the fundamental
mechanisms of the shear layer are two dimensional
and, hence, the numerical scheme {s capable of
predicting the large scale features accurately.

To study entrainment, a passive conserved
scalar with a normalized concentration value equal
to zero in the high speed stream and equal to one
in the low speed side 1{is introduced at the inlet
section. At each time step, 19 elements are
introduced in each stream. The initial distance
between two neighboring elements in the cross
stream direction is taken as &y = 0.021. The time
step st = 0.1, thus the distance between the
elements in the streamwise direction i{s éx = 0.05
on the average. Since diffusion i{s more critical
in the cross stream direction, &y is chosen to be
smaller than é6x. A case with 6y = 0.016, using 25
elements in each stream was computed, showing no
significant change in the overall behavior.

Figures 5, 6 and 7 are obtained for Reynolds
number, Peclet number and velocity ratio 10,000,
4,000 and 1/2, respectively. Figures 5 and 6 show
the velocity and location of all the vortex and
scalar elements respectively, while Fig. 7
exhibits the strength of each of the scalar
elements at the non-dimensional times of t « 28,
29 and 30. In Fig. 6, the dots represent the
fluid from the high speed side with normalized
concentration ¢ e o, and the open circles
represent the fluid from the low speed side with ¢
= 1. This figure indicates that the rollup of the
vortices and their subsequent pairing entrains
fluid from both sides of the free streams into the
cores of the vorticity layer, which results in the
enhancement of mixing between the two streams.
Entrainment asymmetry {s observed as more fluid
from the high speed 8ide is present in the low
speed side than the opposite (Koochesfhani [29]).

The instantaneous profiles of the
concentration field are averaged over a long-time
period and the statistical values are compared
with experimental data in Figs. 8 and 9. Figure 8
shows the mean value of the concentration, Cpo 88




a function of (y-yo)/(x—xo). where Yo is measured
at Eﬁ = 0.5 and x_ is the virtual

origin of the mixing layer based on the mean
concentration profile (in the calculation, x =
0). In this figure, the solid 1line is the
computed mean concentration at x = 4 and the data
points are obtained from recent experimental
measurements by Masutani and Bowman [30] for a
dilute non-reacting mixing layer with the same
velocity ratio. Figure 9 shows a comparison

between the computed and measured mean

fluctuations of the concentration, e (c-Em)Z.
It is evident from the two

figures that both the mean and the second moment
of the conserved scalar across the width of the
shear layer are accurately predicted by our
computations.
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Figure 5. Vorticity field at Re = 10000,
y2/u1 = 0.5.

Figure 6. Scalar's velocity field at Re = 10000,
u2/u1 = 0.5,

Figure 7. Concentration field at Re = 10000,
Pe = 4000, U2/U1 = 0.5.
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Figure 9. Normalized rms concentration profile as
a function of the cross-stream
coordinate.
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We note tnat the results in Figs. 8 and 9 are
in better agreement with experimental data than
those previously predicted by Givi et al. [31].
In these calculations, a k-¢ turbulence model and
a gradient diffusion model for turbulent transport
of the scalar mean, moment and probability density
function was utilized. In the k-e¢ calculations,
the concentration fluctuations exhibit a fairly
smooth bell-shaped profile with a much less clear
double "hump" in the middle region, indicating
poor agreement near the high speed stream. The
present calculations show the two local maxima in
the fluctuation profiles that correspond to the
location where the gradient of the mean value is
highest, The same behavior 1s observed by the
experimental results of Masutani and Bowman [30]
and Batt [32]. It 1is clear that, in accordance
with the findings of Broadwell and Briedenthal
[33], the intermittency <caused by the large
coherent structures contributes greatly to the
statistics of turbulent flows.

I11.2 REACTING MIXING LAYER

In the calculation of a reacting mixing
layer, two reactants F and O are introduced on
both sides of the splitter plate. At x = 0, for y

>0, cp™ 1 and cq= 0, and for y <O, ey = 1 and

CF' 0, while cp = 0. As reactants are entrained

into the mixing cores of the layer, they diffuse
across the original interface and chemical
reaction proceeds. The rollup and pairing
increases the original length of the interface by
many folds and allow the entrained fluid to
diffuse along a 1larger boundary (Ghoniem et al.
[34]). During this process, if the Lagrangian
elements wutilized ¢to represent the interaction
between chemically reacting species are brought
close enough so that the distance between two
neighboring elements is smaller than the
characteristic diffusion length, they react at the
rate defined by Eq. (17).

In Figs. 10, 11 and 12, we present the
velocity, 1location and the strength of the
elements in terms of product concentration for the
reacting mixing layer with constant rate chemical
kinetics and temperature-dependent reaction rate,
respectively. The amount of the products formed
due to chemical reaction {s represented by the
diameter of the circles in the figures, i.e.
larger circles indicate more products. In both
cases, Re = 10000, Pe = 4000, and U2/U1 = 1/3
while Le=1, In the constant rate kinetics case,
the value of the Damkohler number Da = 1 and in
the temperature-dependent kinetics Da= 200, Ta =
10 and Q = 5. Note that in both cases the value
of the non-dimensional kinetic parameters are low
enough 8o that the effects of heat release on the
fluid dynamics can be negligible. The stiffness
of Eq. (19) for large values of the Damkohler
number imposes a restriction on the time step of
integration. In these calculations, we found that
at « 0.1 1s sufficiently small to accurately
integrate the slow chemistry,

A comparison between the two figures reveal
that under isothermal conditions, the products are
formed as mixing occurs Jjust downstream of the
splitter plate, while in the temperature-dependent
kinetics calculations, there is an ignition delay
before the reactant reach a temperature high
enough to allow any significant chemical reaction
to occur., Once the reaction begins, the mechanism

LTI W RN W T TR W T
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Figure 10. Scalar's velocity field at Re = 10000,
y2/u1 = 1/3.
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Figure 11. Product concentration field, Re = 10000,
Pe = 4000, U2/U1 = 1/3, isothermal
reacting layer.

W = 09950 W o 0000
TIR « I.00.

st
E%‘%‘“‘?% 2%

Figure 12. Product concentration field, variable
temperature reacting layer.
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of product formation and chemical reaction in both

cases are asymptotically the same.
Damkohler number to Da = U400 results in a shorter
jgnition delay, and preheating the reactants by
increasing the temperature at the inlet to Ti{ =
Q/2 while Da = 200, eliminates the ignition delay
as indicated in Figs. 13 and 14, respectively.

In order to examine the effects of chemical
reaction on the transport of species, the
concentration statistics in the temperature-
independent reaction case are presented in Figs.
15 and 16. These figures correspond to the
ensemble mean and fluctuation in the bottom-stream
species concentration in a reacting mixing layer
with Da = 1, U2/U1 = 1/2, Re = 10000, and Pe =
4000. A comparison between figures 15 and 8, and
between figures 16 and 9 indicates that near the
free stream, the chemistry affects the statistical
behavior of the species. Near the reaction zone,
however, the mean and the rms values of the
concentration are lower under reacting conditions,
while the second hump near the high speed stream
side of the rms profile in the non-reacting layer
is eliminated 1in the reacting flow due to the
local consumption of the species by chemical
reaction. The same behavior was also observed in
the experiments of Masutani and Bowman [30] in a
reacting mixing layer under isothermal conditions.
Their results, however, can not be compared
quantitatively with the present calculations since
the values of the chemical parameters employed in
the numerical simulation are substantially lower
than those of the experiment.

Increasing the

Figure 13. Product concentration field, variable
temperature reacting layer.
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Figure 14. Product concentration field, variable
temperature reacting layer.
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111.3 EFFECT OF HARMONIC FORCING

The dynamic effect of oscillating the
upstream side of the layer was studied
experimentally by several authors, e.g. Oster and
Wygnanski [35] and Roberts and Roshko [21] and
numerically by Ghoniem and Ng [22]. Their results
indicate that in the forced case, eddy
interactions follow four stages. In the first
stage, the layer rolls up at the harmonic of the
forcing frequency closest to the most amplified
mode. In the second stage, a process of
accelerated pairings yields a large eddy which is
in tune with the forcing frequency. This large
resonant eddy appears earlier than it would appear
in the case of an unforced layer. In the third
stage, pairing among resonant eddies, which
represents a neutrally stable mode, {s disabled
and the growth of the vorticity layer i{s impalred
for several eddies downstream. In the fourth
stage, the effect of forcing diminishes and
pseudo-random pairing {8 resumed. Moreover,
velocity statistics 1is affected by forcing, and
the sign of momentum transfer across the layer is
reversed following pairing. Entrainment of

passive particles was found to be commensurate
with the development of the vorticity layer.
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In the recent experiment by Roberts and
Roshko [21], it has been observed that periodic
forcing has a direct influence on the outcome of
chemical reaction across a turbulent shear layer.
The results of this experiment indicate that when
harmcnic forcing is applied, the mixing rate: (1)
is 1increased in the 1initial stages where the
resciiant eddy is forming; (2) is decreased in the
intermediate stage which corresponds to the
resonant or "frequency-locked" region; and, (3) is
the same as that of the unforced layer further
downstream. In order to characterize these three
regions, the Wygnanski-Oster parameter X" - aU

x/Um2 is wutilized, where Q s the forcing
frequency [35]. Roberts and Roshko [21] and
Browand and Ho [36] show that the three different
regions can be classified according to the local

value of Xu parameter. In region I, X“ <1, the

growth rate is enhanced. In region II, X" > 1, the

frequency-locked region, the growth rate is
inhibited. 1In region I1I, the growth rate relaxes
to that of the unforced layer.

In order to investigate this phenomenon
computationally, the response of the reacting
shear layer to the application of low frequency,
low amplitude perturbations on the upstream side
of the shear layer is computed. Streamwise
osclillations are applied on both sides of the
layer, hence a pressure perturbation is imposed
without changing the vorticity field. The
streamwise velocities are taken as Ul = 1 + a sin
(2vQt), and U2= a U2, where a is the amplitude of
forcing.

The normalized distribution of the product
thickness along the mixing layer for three cases,
Q=0, 0.5 and 1, {8 shown in Fig. 17. In these
calculations, a = 0.1, and Re = 4000. The flgure
indicates that for @ = 1, mixing is enhanced in
the initial part of the 1layer, 1 S x § 2. The
resonant, frequency-locked region begins at x = 2
and ends at value x -~ 3. In this region, mixing
is reduced and {s less than that of unforced
mixing layer. Downstream of this region, x 2 3,
mixing rate resumes its natural growth and reaches
asymptotically that of the unforced layer. For
lower forcing frequency, @ = 0.5, the same overall
behavior is observed. In this case, however, the
results of numerical calculations indicate that
the resonant frequency-locked region is
approximately in the range 3 § x § 4, A
comparison between the range of the frequency
locked region calculated here with that estimated
by Browand and Ho [36] is shown on Table I.
Considering the fact that our simulations ignore
the effect of small scale three-dimensional
turbulence motion, and considering the non-
universality of the Browand and Ho's curve due to
its independence to experimental conditions and
other important non-dimensionalized parameters,
this agreement is encouraging.

TABLE I

frequency locked region

2 calculated measured [36)

0.5 3sxsh 2.66 $ x §5.33

1.0 28x83 1.33 $ x § 2,66
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Figure 17. Variation of the product thickness
versus the downstream distance.

I11.4 EFFECT OF STRAIN RATE

It has been shown experimentally by Tsuji
{37], numerically by Liew et al. ([38], and
analytically by Peters [39), that the strain rate
has a major influence on the flame structure,
particularly in non-premixed systems. In the
counter-flow diffusion flame experiment of Tsuji
[37], it was observed that increasing the
magnitude of stretch near the flame surface
results in an increase of the flow of reactants
into the reaction zone. AS a result, the chemical
reaction is not able to keep pace with the supply
of reactants, and the reaction rate is reduced
until local flame quenching occurs. The analysis
of Peters [39], which is based on the method of
matched asymptotic expansion at large activation
energy, shows that the mechanism of flame
extinction can be addressed by examining the local
value of the rate of scalar dissipation. This
parameter is viewed by Peters [39] as the inverse
of the diffusion time scale. If the local value
of dissipation is |increased beyond a critical
limit, the heat conducted away from of the
diffusion flame can not be balanced by the heat
produced by the chemical reaction. As a result,
the maximum value of the temperature decreases,
and the reaction eventually ceases.

By increasing the number of scalar elements
to 38 in each stream while decreasing the
computational domain to  Xmax - 4, and by
preheating the incoming reactants to Ti = Q/2 to
start the chemical reaction immediately downstream
the splitter plate, we were able to observe this
phenomenon. Figures 18 and 19 show the
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instantaneous velocity and temperature rise, T-Ti,
of the scalar elements at times of t « 19 and t =
21, respectively. In this case, the Damkohler
number, the normalized enthalpy of reaction, the
activation energy and the velocity ratio at the
inlet are 50, 8, 20 and 1/3, respectively. The
cross stream direction is enlarged by a factor of
2 for the purpose of clarity.

The figures show that the number of scalar
elements near the braid, which {s the thin link
between two neighboring cores, {is only a small
portion of the total number of elements within the
computational domain, which reached more than
5100. This indicates an instantaneous quenching
at the stagnation points of the layer. Moreover,
the temperature and product concentration in the
reaction zone reach a maximum at the core of the
eddies where the vorticity concentration is high,
while they reach a minimum at the stagnation point
within the braid between the neighboring cores
where the strain and the scalar gradients reach
their maximum values, This is consistent with the
results of the pseudo-spectral calculations of
Givi et al. [15], and with the experimental
observations of Tsuji [37] who showed that the
local extinction of diffusion flames occurs mainly
at the regions of high dissipation rate. At these
regions, the temperature tends to decrease, and if
it goes below a critical characteristic value, the
flame locally extinguishes.

Quantitative analysis of the effects of
stretch on the chemical reaction 1is rather
difficult in the context of present algorithm.
This is due to the fact that there are very few
scalar elements near the regions of high strain,
and as shown by Ghoniem et al. [34], most of the
elements tend to be concentrated near the regions
with low dissipation. Implementation of a
numerical scheme based on the transport of the
scalar gradients, as in Ghoniem et al. [34] can
improve the accuracy of the analysis
substantially, particularly those associated with
the effects of stretch. In this method, the
elements are concentrated near the regions of
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Pigure 18. Temperature field for reacting mixing
layer.
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Figure 19. Temperature field for reacting mixing
layer.

large gradients, or high dissipation, and hence a
smaller total number of elements have to be
considered. The implementation of this method for
the numerical simulation of unpremixed reacting
flows is presently underway to study the effect of
strain rate more accurately.

IV CONCLUSIONS

In this work, a numerical scheme based on the
transport of computational elements carrying
vorticity and scalar quantities has been developed
to simulate a reacting planar, two-stream mixing
layer with unmixed reactants, The scheme solves
the transport equations at high Reynolds and
Peclet numbers without using models for turbulence
closure. A Lagrangian stochastic model i{s used to
implement the chemical reactions for both constant
rate kinetics and variable temperature Arrhenius
reactions.

In the non-reacting flow simulations, the
calculated statistics of the mixing of a conserved
scalar are in good agreement with experimental
data. In particular, the numerical results show
the presence or two maxima {n the fluctuation
profile, In the constant rate reacting flow
simulation, the effect of chemistry is to smooth
out this curve and produce a single maximum, which
agrees with the experimental observations.
Harmonic forcing enhances the mixing within the
accelerated growth zone of the vorticity layer,
while it impairs the entrainment of the unmixed
fluid into the cores in the resonating region. As
a result, the numerical simulation indicates a
decrease in the rate of product formation in the
frequency-locked region, similar to previous
experimental findings.

In the Arrhenius, temperature- dependent
kinetics, the mechanism of ignition delay and the
effects of reactants preheating on the decrease of
the duration of this delay is observed. Also, the
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the braids.

non-equilibrium

coupling
dissipation rate and
revealed as

between the scalar
the flame structure is
quenching frequently appears within

To describe this phenomenon more

accurately, work is underway to construct a higher
order scheme which can provide better resolution
at the regions of strong strain rates.
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The paper on "Three dimensional vortex simulation with application to
1y an axisymmetric shear layer" describes the three dimensional vortex element
o, method and its application to the evolution of the azimuthal instability on
W, a vortex ring and the initial stages of development of a turbulent jet.
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ABSTRAZT

A three dimensional vortex element method is
developed for the numerical simulation of
incompressible flow at high Reynolds number. The
method utilizes vortex vector elements with finite
point-symmetric cores to discretize the vorticity
field. The transport of these elements is done in
Lagrangian coordinate by computing the velocity
field as a summation over the individual
contributions of the elements.

The method 1is used to compute the self-
induced velocity of a vortex ring and the
stability of a vortex ring with finite core.
Results show that vortex rings become unstable to
a particular azimuthal perturbation that depends
on the core/radius ratioc. The mode frequency and
shape of the unstable state are {n excellent
agreement with analytical and experimental
results. The method {s applied to study the
rollup of an axisymmetric shear layer and the
generation of large scale vortex ring structures.

I. INTRODUCTION

At high Reynolds numbers, vorticity occupies
a small subset of the volume of the flow fleld.
This 1is exemplified by boundary layers, shear
layers, waxes, jets, separation and recirculation
zones, etc. These vorticity distributions are
unstable to natural perturbations, At small
amplitudes, perturbations grow exponentially in
time, however, they have a limited effect on the
flow. The growth of these perturbations into the
non-linear stages s, however, accompanied with
Severe distortions of the shape of the vorticity
field and strong changes in  the local
concentration of vorticity. Examples for these
changes is the formation of large scale structures
in shear layers and recirculation zones.

Copyright (©) 1987 by A.F. Ghoniem. Published by
the American Institute of Aeronatics and
Astronautics, Inc., with permission.

¢ Associate Professor, Associate Fellow AIAA.

#¢ Research Assistant

*sspesistant Professor, Member AIAA.

NS AT R
Nl B

A S lik "

(0N S UM L e MO L e e Lt |

In highly three-~dimensional flows, several
forms of instability may arise simultaneously.
The evolution of spanwise waves on the large scale
eddies and the development of azimuthal
instability along the axis of vortex rings have
been observed experimentally as evidence of
multiple forms of instability. In this case, the
distortion of the vorticity field occurs faster
and the non-linearity is compounded by the
interaction between different instability modes.
Moreover, the problem 1is governed by several
length and time scales, and multiple states can dbe
expected depending on which mode grows faster (for
photographic record of the development of
vorticity fields, see Van Dyke [1] and Lugt [2]).

It has been reported experimentally, and
observed in numerical studies, that these changes
in the vorticity field may not Incur strong
variations 1in the mean flow fileld. This is
expected since the velocity is an i{ntegral mean of
the vorticity (field. However, they affect the
fluctuations strongly and to the level where the
order of magnitude of the fluctuation may change.
This {s extremely important in mixing and heat
release in chemically reacting flows since the
rate of mixing, and thus chemical reaction, is a
strong function of the fluctuation and depends
weakly on the mean field. It has dbeen confirmed
that by changing the vorticity field of a shear
layer through {mposing certain perturbations on
the flow, the rate of chemical reaction can be
enhanced or slowed and that turbulent shear
stresses can reverse sign during the same process
(for a review and some recent results, see Ho and
Huerre [3], Robert and Roshko (4] and Ghonlem and
Ng [5]).

To capture these changes, numerical
simulation of the unaveraged non-linear equations
of motion has been utilized. For the success of
these simulations, care must be exercised (n
resolving small variations since they ultimately
grow to produce the finite amplitude changes, and
hence numerical diffusion should bde minimized,
Moreover, schemes ®ust adapt to the strong
distortion in the flow fileld without developing
numerical instadbilities. Thus, Lagranglan schemes
seen like natural candidates. A grid-free class
of Lagrangian schemes, vortex methods, is utilizeg
in this work to study the evolution oOf three
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dimensional flow fields dominated Dby high
concentratior of  vorticity at high Reynolds
numbers.

In vortex simulation, vorticity distribution
is represented by a [finite numder of localized
vortex elements, or vortex disks in two dimensions
(blobs aczording to Chorin [61), and vortex balls
in three dimensions (vortons according to Saffman
and Merion [7]), or vortex arrows according to
Leonard [8) wnich move in an inviscid field with
the local particle velocity. A particular flow
configuration can be fully described when the
appropriate boundary conditions are imposed on the
velocity field by adding an extra irrotational
field, Two-dimensional vortex simulations have
been useful in providing an accurate description
of the 1large-scale structure of turbulence in
shear flows (Ashurst [9], Ghoniem and Sethian [10]
and Ghoniem and Ng [5])). However, they cannot be
used to describe phenomena in which streamwise
vorticity, or variation along vortex lines, plays
an {mportant role. Moreover, they lack the
ability to capture small-scale turbulence
structures which arise due to vortex stretching
and tilting with respect to the main flow plane.

In this work, a three dimensional vortex
element method is developed for the numerical
simulation of flow field with high concentration
of vorticity at high Reynolds number, The scheme
utilizes vortex vector elements with finite point-
symmetric cores to discretize the vorticity field
and follows their motion in  Lagrangian
coordinates. The vortex vector elements change
their vorticity according to the local stretch,
while their direction is determined by the tilting
of the vortex lines, The rotational velocity
field is computed by summing over the field of
each individual element, which is evaluated from
tne desingularized Biot-Savart law. The potential
velocity added to satisfy the boundary conditions
is computed by using the appropriate image system

and stabllity of a vortex ring and a vortex torus.
The scheme 1is constructed as follows: The
vorticity field is first discretized into a finite
number of small strajght line vortex vector
elements and then followed {n a Lagrangian frame
of reference. Each element has a finite core of
vorticity which 1s point-symmetrical around its
center, and hence the nomenclature "vortex ball".
The velocity produced by a distribution of vortex
vector elements, or vortex balls, {s obtained by
the desingularized Biot-Savart law, which amounts
to summing the velocity produced by individual
vector elements. The procedure for a consistent
discretization and the evaluation of the Biot-
Savart law is explained 1in Section II.2. Its
numerical accuracy and convergence under steady
state conditions is shown 1In Section II1.3. The
comparison between the numerical and analytical
results for the stability a thin vortex ring and a
vortex torus, another test for the accuracy of the
method under unsteady state, is discussed in
Sections II.4 and II.S5.

The potential velocity field added to satisfy
a particular set of conditions on the boundaries
is determined by solving the Laplace equation
numerically subject to the appropriate boundary
conditions, When the boundary conditions match
those of a standard potential solver, f{.e.
Dirichlet or Neumann conditions, that particular
routine can be wused to evaluate the potential
velocity. In cases when the dboundary condftions
are neither Dirichlet nor Neumann type, one faces
difficulty in satisfying continuity along the
boundaries, and a special algorithm must be
constructed to handle this difficulty. This is
discussed in Section I1I,

I1.1. EQUATIONS OF MOTION
The motion of an {ncompressible inviscid flow
is governed by the Euler equations:

of the vortices. For recent reviews of vortex veu=0 m
calculations {n three dimensions, see Leonard
{8,117 and Saffman and Baker [12]. %% s u-Wue-W (2)

To check the accuracy of the vortex method,
we use test problems and make comparison with
experimental and analytical results. The
discretization algorithm is applied to compute the
self-induced velocity of a vortex ring and the
results are compared with the Saffman's analytic
solution [13]. The stability results of a vortex
ring with a finite non-deformable core and a
vortex torus with a deformable core are compared
with the analytical solutions of Wi{dnall and
Sullivan [W4] and Widnall et al. [158].
Preliminary results for the rollup of a three
dimensfonal shear layer sub ject to an axi-
symmetric perturbation are compared with the
experimental results of Vandsburger et al. {16]
and Roquemore et al. [17].

II. FORMULATION AND NUMERICAL SCHEME

expressing the conservation of mass and momentum,
respectively. In these equations, u s (u,v,w) is
the velocity, t 1s time, ¥ o (3/3x,9/9y,3/932) is
the gradient operator, while x « (x,y,2), and p is
pressure. Quantities gare normalized with respect
to the appropriate combination of a characteristic
length scale, velocity scale and density. In
vortex simulation, the equations are recast in
terms of the vorticity e:

o = ¥Yxu (3)
The vortex transport equations are obtalned
by taking the curl of Eq. (2). Using Eq. (1) ang

using the fact that V. » 9.¥xu = 0, i.e. the
vorticity forms a solenoidal vector field, we get:

g-:w-v.-.-w (u)

4} In this section, the constructior of a three-
" dimensional scheme for tracking the evolution of a If the vorticity field {s known, the velocity can
- vorticity structure in an arbitrary domain is be evaluated by integrating Eqa. (1) and (3), as
&: described. The accuracy of the scheme is checke¢ shown below, while Eq. (4) s used to transport
2 against theoretical results regarding the motion 2 the vorticity in the form of a number of discrete
t
L
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elements, This 1is, in essence, the backbone of
vortex simulation algorithms.

Based on the Helmholtz decomposition of a
vector field, the velocity can be split into a
solenoidal and an irrotational component,

us= uw . up (%)

where u“ {s the velocity induced by the vorticity
field in an unbounded space, and np is the

potential component added to satisfy the potential
no-flow condition along the boundary of the
domain. Each  component will be evaluated
separately, satisfying the appropriate boundary
conditions, and then added to obtain the total
velocity.

To evaluate the velocity field induced by a
given vorticity distribution a In an unbounded
space, we assume the existence of a vector stream
function ¢ such that

u - Yx ¢ (6)

By construction, II“I satisfies the continuity

equation  since v.¥xe - 0 identically.
Substituting in Eq. (3) and assuming that V.¢ = O,
one obtains:

“ee-w 1

The solution of this Poisson equation in three
dimensions i{s given by:

vix) = [ G(x - x') e(x') dx’ (8)

where G(x) = 1/{u4x») is the Green function, and r
= |x|]. As smown by Batchelor [18), the above
expression for ¢ 1{s solenoldal, as previously
assumed, if the boundaries of the domain extend to
tnfinity. This is essentially the condition neededy
to evaluate uw.

The solencical velocity component, uu.can be

evaluated by substitution In Eq. (6) which ylelds
the well-known Biot-Savart law:

u, - J Kix-x') x wi{x') dx’ (9)
1 x
K(x) = e :3 (10)

where x' is the position of the volume element
dx’.

The implications of the equations of motion,
Eqs. (3) ang (&), regarding the evolution of the
vorticity field can be summarized in the following
important dynamical statements, given here without
proof while used later {n the construction of the
numerical algorithm (for details, see Batchelor
(h8d):

(1) Kelvin theorem: The circulation around a
closed material loop, defined as T » A! w.dA where

A is the surface area within the loop, s
conserved as the loop is deformed;

(2) Helmholtz  theorem: Vortex lines,
parallel everywhere to the local vorticity vector,
move as material lines.

Furthermore, the vorticity vector can be
written as @ = w &, where £ is the direction of
the local vortex line, or material lines, vhile dx
e dA.dt where A i3 the cross sectional area normal
to the direction R. The circulation of a vortex
line, I, which is conserved along a particle path
according to Kelvin theorem, is expressed in terms
of the vorticity eas 'l = A! ®.dA.

Since up is an {rrotational component, then
up « V¢, where ¢ is a velocity potential governed
by:

v2e = 0 (1)

while the total velocity, u, is subject to 3
potential boundary condition at the boundaries of
the domain, 1.e.(u@° Ve).n is given on 3D, vwhere n

is the local normal to 3D, which denotes the
boundary of the domain.

11.2. EVALUATION OF THE ROTATIONAL FIELD
Analytical evaluation of the Biot-Savart
integral in Eq. (9) 1is restricted to simple
vorticity distributions, such as rectlinear
vortices and circular vortex rings of concentrated
vorticity. Therefore, the integration must be
performed numerically for an arditrary vorticity
distribution. For that purpose, the continuous
vorticity fleid is discretized into a number of
vortex vector elements, each with an assigned
vorticity - . The magnitude of the vorticity

associated with each element is distributed over a
small spherical volume around its center according
to a core function f with a characteristic core
radius §. The vorticity field is hence expressed
as:

N
- 3 -
w(x,0) 121 ® (0) n° f (x - X)) (12)

where N is the total number of vortex vector
elements, and X1 is the center of the vortex

element, while h is the initial distance between
the centers of neighboring elements. The accuracy
of this discretization is discussed {n Beale and
Majda [19,20]. Note that {f fe- 6(:-!1). where

6(.) s the Dirac delta function, Eq. (12)
represents a distribution of singular vortex
lines, or vortons [7]. However, in this
representation, vortex balls, while equivalent to

vortex disks in two dimensions, are used and ré-

1763 £(r/6), while & 18 finite. The distribution
of the magnitude of the vorticity aasociated with
each element is point symmetrical around {ts

center X while {ts direction everywhere is ge

®/u, and w = le]. ¢ is the core radius of the

element where most of its vorticity is
concentrated, £ > 0 for r < 6, and f vanishes
rapidly for r > 8.

A simple intuitively appealing choice for a
core function could be the Hill spherical vortex
for which w= A p for p < § and w = 0 for p > §,




where 02 - x2 . y2. o being the radial direction
in a cylindrical coordinate system, This,
however, is a poor choice for the core function
since the latter should have a maximum at the
center and decay further away. Moreover, w 1s not
a function of r. A better choice may be the three
dimens{onal analogue of the Rankine vortex, i.e. w
= g for r § e and uweO forr 2§,

For accurate discretization of the continuous
vorticity distribution, & should be chosen larger
than h, where h is the initial separation between

the elements and h3 is the volume element used to
construct the vortex balls. This will ensure that
the core functions  associated with neighdboring
elements are highly overlapping. The {ntroduction
of a simi{lar discretization procedure has been
widely used {n two dimensional simu.ations to
construct stable and accurate vortex algorithms

{5,6,8,9,19). Moreover, h may taxe on cifferent

values in the three principle directions, and h3

is replaced by nV, where av = nx ny hz‘ In this

case, the vorticity associated with an element s

w, = 1/ sV J w dx, the integration is performecd

i
over av.
From Helmnholtz theorem, the vorticity

associated with a material element u.1 changes as

it stretches, .1<t) - [ui(D)/All(O)] Ali(t). while

st ~ |ot{. Moreover, according to Kelvin theorem,
the circulation of the vortex vector element
remains constant as it moves along particle paths,
while due to 1incompressdility, av 1{s constant.
Thus, Eq. (1)) can be written as:

N
( - 3 ) -
wix,v) 1:1 ri oll(t, ré(x li) (v3)

In this expression, at, s the material vector
associated with the vortéx vector element, and X,
is the midpoint of this vector, 11(11.0) . Xl.

The velocity field is obtained by

substituting Eq. (9) into Eq. (10) and
integrating:
N (x-x.) x ot "
u“.-L_" r, —_— 3 Loy ow
{=1 r
2

where «<{(r) = 4n / f(r') r' ar', and r

li" while 1 ¥ {s the center of the vortex vector
aL,. In this representation, each vortex vector
element is described by (I, X, °l)1' Since x and

st are the position and length of a material
particle and a materi{al line, respectively, their
varijation with time can be obtained from
(Truesdell [21)):

d
# - vaixo (15)
"—:—' e st - Wu (16)

Thus, using a first-order time integration;

li(t‘At) - 11(t) N at (17
and
Ali(t‘ﬁt) - Ali(t) . Alx(t) . 'u1 at (18)

The velocity gradient can be evaluated
analytically by differentiating Eq. (14), as
proposed by Anderson and Greengard [22). However,
since the vorticity moves along particle paths,
the material line coinciding with the vortex
vector nll can be approximated by {its terminal

points 111- X, Altlz and 121- L T Alilz. and

the center of the vortex vector element 18
approximated by y = (y! ¢ 12)72. In this schenme,
a vortex vector element is described dy (T, 11,
§2) and both terminal points are updated each time
step. A similar construction was used by Chorin
[23,24,25] to study boundary layer stadbility, the
evolution of a turbulent vortex and the properties
of developed turbulence. Since the vorticlity
field is solenocidal, the end of an element ia the
beginning of the next element 1f these elements
were neighboring elements on the same vortex 1ine
at t « 0. Thus, this scheme can be used to ensure
the satisfaction of the condition V.e = O by
maintaining the connectivity of vortex tubes no
matter how accurate {8 the discretization of the
vorticity field. The same property 1s utilized in
the filament scheme of Leonard [26] (see also
Ashurst and Meiburg [(27)). A discuasion of the
relationship between different algorithms is given
by Greengard [28]. 1In our computations, a second-
order time integration algorithm s used to move
the terminal points, (x!,x2), of the vortex vector
elements, e.g., for xi:

.
- l1l(t) ¢ v, at

and (19)

1, (toat) = g1, (8) ¢ (u, * uy)/2 at

where u* » u(y®).

The accuracy of the vorticity discretization
depends on: the choice of the core function f, the
distance between the centers of neighdoring
elements h, and the ratio between the (nitial
separation between the vorticities and the core
radius, §/n. In the analysis of Beale and Majda
{29], 1t 1s shown that a second order scheme {s
obtained if the [following third order Gaussian
core function is used:

3
t(r) -i;c r (20)

and;

3
w(r) =1 - e (21)

AS the flow develops strong stretch along the
vortex lines, the effective value of af exceeds h
and the amount of vorticity transported by each




vortex ball grows. To maintain a uniform
resolution, if oLy > 2h, a vortex element {s split

into two elements, each with 4L = 511/2 and ' =
r1.
the vorticity field among a larger number of
elements to maintain the accuracy of the

calculations. The value of & is kept constant in
our calculations.

Effectively, this amounts to redistributing

11.3. SELF-INDUCED VELOCITY OF A RING

To investigate the effect of discretization
of the vorticity field on the accuracy of the
calculation of the velocity field, the self-
induced velocity of a vortex ring with a radius R
and a finite core radius o s computed and
compared with the analytical results for a thin
vortex ring. For this purpose, the ring is
discretized along 1its axis {into a number N of
vortex vector elements, where the length of each
element {8 h = a%{0) = 2wR/N, Each element is
represented by a computational vortex ball with
core radius & = 0. This is a worst-case analysis,
since normally one would use several elements to
represent the core, and choose 6§ < ¢ (as will be
shown later). However, we start with this case
for stmplicity and computational convenience.

To distinguish between the two
representations of a vortex ring; where the vortex
balls are aligned along the ring axis forming a
tube of vorticity, |{is called the thin tube
approximation while {f several vortex balls are
used within the cross section of the ring, it is
called a vortex torus. The first approximation {s
different from the thin filament approximation of
Leonard [26]. 1In the thin filament approximation,
the Biot-Savart 1law {s modified to remove the
singularity at the center of the filament and the
core maintains {ts vorticity distridbution as the
filament s deformed. In the thin tube
approximation, neighboring elements can m@sove
freely will respect to each other, and hence
changing the local vorticity distribution of the
tube.

In the discretization of the vortex ring
using the thin tube approximation, 6 = § h, where
8 > 1 to insure the overlapping Dbetween
neighboring elements. Eq. (14) {s wused o
evaluate the self-induced velocity V by summing
the contribution of the elements around the ring,
excluding the effect of the element on {tself.
Results are compared with the analytical
expression of Saffman [13]) for a thin vortex ring,
o/R << 1:

T 8R
V']'—R(lnc—'C) (22)

where C o 0.558 for a second order Gaussian
distridbution of vorticity within the core and ¢ {9
the effective radfus, 1{.e. 1t {s the standard
devistion in the Gaussian.

A comparison between our computations of the
self-induced velocity and £q. (22) is shown {n

Fig. | for different values of N, V = VA(I/UwR).
Three comments should be made here: (1) since the
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Figure 1. The normalized self-induced velocity of

a vortex ring V = V/([/ugR) vs. the number of
computational vortex balls used to discretize the
ring, N. The analytical results of Saffman s
represented by the straight line. 0/ReD.1 = 0 ;
0/Re0.2 = ¢ ; ¢/Re(.3 = v,

core function of the vortex elements is a third
order Gaussian, Eq. (18), and not a second order
Gaussian as in Saffman's calculations, a slight
discrepancy 1in the self-induced velocity |is
expected (a coaparison between the two
distributions is presented in Fig. 2); (2) since §
> h, and a strong overlap between the cores of
neighboring elements is ensured, the vorticity at
any point is the contridbution of many elements
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Figure 2. A comparison between the vorticity

distribution within the core of the thin ring used
in the computations of Fig. 1, 1.e. a third order
Gaussian described by Eq. (18), and that of
Saffman ring, i.e. a second order Gaussian. In
both cases, o/R « 0.25.
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along the ring axis
element and the total

(the vorticity of a single
ring vorticity at any point

is presented in Fig. 3, showing that while the
{ K-} T — r v
[ X] Vortex Ball J
Vortex Ring
0.} .
| K-Rd E
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Figure 3. The vorticity distribution of a single
vortex ball and the vorticity distribution of a
vortex ring, both normalized with respect to their
maxima 0 = § = 0.25 R.

magnitude s strongly affected be neightoring
elements, the core size is the same); and, (3) the
analytical expression applies for o << R, and
hence best comparison {s expected for o/R e 0,9,
while it deteriorates for thicker rings.

AS the ring becomes thinner, i.e, larger R/g,
more elements are required to achieve an accurate
discretization. This is expected, since by
choosing 6§ = o and ¢ e gh, where B8 {s a factor
larger than one, the number of elements N =
2wR/(8h) = O(R/e), which increases as ¢ decreases.
Therefore, for a fixed core 8ize o, the number of
elements required to compute the self-induced
velocity due to curvature R grows as R increases.

IT.4, STABILITY OF A THIN VORTEX RING

A more interesting problem, providing a test
for the accuracy of the time-dependent
computations, is the growth of small perturbdbations
on the vortex ring. There s a rigorous
asymptotic linear theory for the stadbility of
vortex rings in two forms: (1) for a ring with a
non-deformable core, performed by Widnall and
Sullivan [14] ; and (2) a more elaborate theory
for a ring with a deformable core reported in
Widnall et al. [15]), Widnall (30] and Widnall ana
Tsai [31). We will compare the results of the
thin tudbe approximation to the [first case, and
results for the vortex torus to the second case.

To study the linear stabllity of thin vortex
rings in the thin tube approximation, i.,e. with
almost non-deformable cores, a radial perturbation
of amplitude ¢/R -« 0.02 and a wavenumder n {s
imposed on the axis of the ring. The wavenumbder
is defined here as the number of waves that is
fitted along the entire length of the ring axis,

2
§

APLITUWDE

NPLITWE

Lath atd 4 o o 4 4 4 2 1.4

thus the size of the perturbation varies in the
azimuthal direction as ap = ¢ 8in (2%n6).
Ooriginally, the ring lies in the x-y plane, and
the streamwise {s the z-direction while p « R for
all vortex Dballs. We start with n = 1 and
increase by an fncrement of one. The time step
used i{s at = 0.10. Similar results were obtained
for o/R = 0.1, 0.15, 0.2, 0.25. In the following,
only the first case is discussed in detail.
For n < n,» where " is the wavenumber of a

neutrally stable mode that neither rotates around
the ring axis nor grows, the waves rotate, or
spin, around the ring axis at a frequency Q that
depends on n. As it rotates around the
unperturbed axis of the ring, the instantaneous
center of the ring draws an ellipse whose major
axis is in the radial direction, p, and the minor
axis is in the streamwise direction 2z. Thus,
these are bending waves that move around the ring
axis, hence the name helical waves ({f the ring is
opened to form a rectilinear vortex, the waves
will like a corkscrew Sspinning at frequency Q).
The sense of rotations of the waves {s the same as
that of ring vorticity. The frequency of rotation
Q starts out low at saall n, grows to a maximum
and then decreases again. The amplitude in the
radial p-direction and streanwise z-direction are
shown in Fig, 4 for ne 2, 4, 6, 8, 10 and 12 for
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Figure 4. The amplitude of the perturdation in the
radial p~direction and the streamwise 2-direction
for a vortex ring with o/R « 0.1, computed using
the thin tube approximation, the wavenumber of
the perturbation isn = 2, 4, 6, B, 10 and 12,
arranged from the top figure. Both amplitudes are
normalized with respect to the initial
perturbation in the radial direction, ¢/R 0.02,

and time {s normalized with respect to RZ/r.. In
this figure, the benavior of the modes n < n is
shown.

o/R =« 0.1, Note that the radial perturbation
produces a streamwise perturdation oOf almost the
same magnitude, All these modes are characterized
as being linearly stable since their amplitudes
remain bounded.

At ne LI the waves neither grow nor rotate.

For o/R = 0,1, at n, = 13 the ring remains in {ts

original plane without bdending, as depicted by
Fig. 5. The next mode, n* = 14, the waves grow In
the radial direction, and then in the streamwise
direction so that the total amplitude grows
exponentially (n time, t{.e, the ring becomes
linearly unstadble and streamwise vorticity is
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Figure 5. The amplitude of the perturbation in the
radial and streamwise directions for the neutrally
stable mode for the same ring as in Fig. &.

produced. Moreover, no wave rotation i{s observed.
The wave amplitudes are shown 1in Fig. 6 for o/R «
0.1.
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Figure 6. The amplitude of the perturbation in the
radial and streamwise directions for the unstabdle
mode n* of the ring of Fig. 4.

As n> n*, the ring i{s stadilized again and
the ejigenfunctions behave in a similar way to n <
"n‘ However, the major axis of the ellipse is now

in the streamwise direction and the frequency of
rotation increases indefinitely. Moreover, the
sense of rotation i3 in the opposite to that of
the ring vorticity. The wave amplitudes in the
and z directions are shown in Fig. 7 for n « 15,
17 and 19.

Similar observations are made for o/R = (.15,
0.2 and 0.25. In all cases, the unatadle mode n*
is a bifurcation in the eigenfunction that
corresponds to fl = 0, In Fig. 8, the results of
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Figure 7. Tne amplitude of the perturbation in the
ragial and sireamwize directions for the modes n >
n* of the ring described in Figure &, The
wavenumper of the perturbation i{s n = 1§, 17, and
'9, arranged from the top.

these computaiions are summarized in terms of Q,
the rotation frequency of the waves, v.s. the wave
number k = no/R. In this figure, Q i3 normalized

with respect to r/Rz. In all cases, the unstadle
mode k* = nfs/R 7 1,25 corresponds to a non-
rotating mode, 0 » O. This {s in agreement with
the theoretical results of Widnall and Sullivan
{143, Tney observed, similar to what we see in
the numerical results, that a mode becomes
unstable when the self-induced rotation of the
waves balances the rotation induced dy the rest of
the ring and the energy of the perturvation {s
utilized in stretching the wave amplitude.

In order to check on the accuracy of the
computations, we varied the discretization
parameter h by using more elements around the axis
of the ring, h = 2sR/N, Figure 9 shows the growth
of the amplitude of the perturbation with time
using an increasing number of elements for g/R »
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Figure 8. The computed results for the dispersion
relation of a ring wusing the thin tube
approximation. 0/Re0.1 < v ; 0/Re0.15 < & .
9/Re0.2 < 0 ; 0/Re.25 +@. The fregquency of

rotation of the msode 0 is normalized with respect

to RZ/r while k {s normalized with respect to R/g.
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Figure 9. The growth of the unstable mode n* o 7
for o/R = 0.0, computed wusing N e 30-140, with
increments aN « 10,

0.2 and n=n® « 7. N e 30 13 the smallest numdber
neceasary to satisfy the condition ¢ 2 h, however,
we notice that N « 90 ta necessary to compute the
logaritheic growth rate accurately. It {s the

Same number required 0 compute V = 3.1309
accurately, as seen in Fig. 2. This 1s not
surprising since the stadility of the local waves
depends strongly on the velocity (or strain fleld)
induced dy the ring on the perturdation. The
linear growth rate, a, = allogh)/at = 0.1625. Tne
analyticsl value obtained by Widnall and Sullivan

(14] for the same value of V 1s LI 0.157,
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Figure 10. The computed wavenumber of the most
unstadle mode vs, the normalized self-induced

velocity V, compared with the results of the
linear asymptotic theory for a non-deformable core
approximation o, the results of the theory for a
deformable  core for a uniform vorticity
distribution o, and for a quadratic distribution

+, and the experimental results of Widnall et al.
»

In Figure 10, we plot the critical wave
number n* agajinst the self-induced velocity V,
usec¢ %o characterize the ring, for the four cases.
On the same pl.ne we reproduce the results of
Widnall et al. [!'5) and Widnall and Tsai [31] for
the non-deformadble core model, the deformable core
model and thei~ experimental results. The
comparison is interesting and proves our early
speculation that tne numerical thin tudbe model
allows small core deformation since the
computational results are cioser to the
experimental data than those of the analytical
solution of the non-deformable core model.
However, it does not allow enough changes within
the core to capture higher order racial variations
within the core which support the short wave
instability that {s observed experimentally.

So far, (t car be concluded that although the
results of the thin tube approximation are in
agreement with the analytical theory of a vortex
ring with a non-deformable core, the model is not
capadtle of describing the stability
characteristics of a3 vortex ring with deformable
finite core, as observed experimentally. Using
vortex balls allows, however, small first order
deformations in the vorticity core of the ring, as
shown {n Fig. 1!, which move the predictions of
the unstadle modes closer to the experimental
values than the analytical theory of non-
deformable core bdul not as close as the results of
the more eladborate theory of deformadble cores.
Thus we must proceed to a more detailed
description of the vorticity core of the ring
using several vortex bdalls to discretize the
vorticity within the core, as we will show next.
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Figure 11, A comparison between the vorticity
distribution within the vortex ring before
deformation and after deformation of amplitude ¢/R
= 0.1 and n, " 6 for o/R = 0.25, computed at point

of zero deformation.

I1.5. STABILITY OF A VORTEX TORUS

To make the distinction between the two
models of the vortex ring clear, this ring is
called a vortex torus. In this representation,
the core of the vortex torus is discretized into
more than one vortex ball 8o that & < g. Thus,
the vortex torus is formed of a number of vortex
rings whose cores are smaller than the core of the
torus. The initia) vorticity u‘(O) assoclated

with each vortex dball is computed from Eq. (12) by
solving the corresponding system of linear
equations, subject to the condition that the total
circulation {s the same. Since the torus is
uniform in the azisuthal direction, it suffices to
S0lve a number of equations equal to the number of
balls used across one crosa-section of the ring.
In the results presented here, nine balls
were used across each section of the ring, one at
the center and eight distributed along the
circumference of a circle with radius p « 0.T4o,
arranged at &5°, This choice for the tnitial
location of the centers of the vortex balls is
used to minimize the difference between the total
circulation of the vortex torus and the sum of the
circulation of the vortex bdalls. The core radius
of each ball was taken as & = 0.8 9. and the
distance between the centers of nelighdoring
elements i{s h = §/1.%, Therefore, the number of
elements used along the circumference of the torus
depends on its redius. Figure 12 show the actusl
vorticity distridbution and the numerical vorticity
distribution produced by the vortex balls. The
mot fon of these balls throughout the cross section
of the torus allows a substantial deformstion of
its core at different sections. Thus, highe~
order radial modes associated with the instadbility
of vortex rings, which has been observed
experimentally and analytically, can be captured.
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Figure 12, The actual and discretized vorticity
distribution of a vortex torus using nine vortex
balls within the core.

Computations were performed for four tori
with ¢/R = 0.5, 0.20, 0.25, and 0.35. 1ln all
cases, the vorticity distribution 1is the same
third-order Gaussian utilized before. The initial
amplitude of the perturbation ¢/R = 0,02, and a
number n of sinewaves were fitted along the torus
to model the initial perturbation. The time step
of integ-ation at « 0.1, and the computations were
performed for 1000, o~ 2000 time steps to observe
the growth of the perturbation, The overall
behavior of the vortex torus was the same in all
cases. As an example, results for o/R = 0.2 are
discussec next {n detail.

Figure '3 shows two views of the torus after
1000 time steps, when perturbed with n =« 8, 9, 10,
anz 11, In the fi~s: three cases, the core
deforms, as Seen by the redistridution of the
individual rings within the torus, and the waves
spin around the unpe~turbed axis of the ring.
However, the perturbation stays bounded. 1In the
last case, the perturbdbation grows in both the
ragdial and the streamwise directions causing
substantial non-uniform deformation around the
ring axis, and the generation of streamwise
vorticity. The amount of deformation in each case
13 seen from the total number of elements used at
the last time step. In the first three cases, the
nusber of elements remains constant at N = 1080
for 1000 steps. In the unstadble case, the number
of elements grows to 1262. Since from Helmholtz

theorem, w(t)/w(0) = a1(t)/4L(0), where u.t i3 the

summation over All for all the vortex elements,

this stretch (s accompanied dy intensification of
the vorticity within the ring at the same ratio of
stretch,

Figure 14 shows two views for the torus I(n
the unstable case every 200 computational time
steps, starting at t = O, It {8 clear that, at
the unstadble mode, vaves do not rotate around the
8ais of the ring while their amplitudes grow,
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10, and 11, starting from the top plot,
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similar to the results of the thin tube
approximation and to the results of Widnall and
Tsai [31]. Moreover, the core vorticity 19
redist~ibuted into a number of sectors equal to
the number of waves. The outer portion of each
sector stretches forward in the streanmwise
girection while the inner part elongates
backwards. On the other hand, results for n = 9,
which is a stable mode, depicted every 300 steps
in Fig. 15, show the rotations of the waves as
peaks and valleys exchange their locations while
the core vorticity remains uniform in the
azimuthal direction.

The average amplitude of the perturbation
around the circumference of a torus with ¢o/R =
0.15 and 0.35 {s shown 1n Figs. 16 ang 17,
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Figu~e '6. Tne growtr of the perturtation with
time for a torus with o/R = 0,2, perturbed with n
= 8. g, 10, an¢ 1,
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Figure 17, The growth of the perturbation with
time for a torus with s/R « 0,35, perturbed with n
«5, 6.
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respectively. The exponential growth of small
perturbations at the early stages is seen at n =
11 and 6 for the two cases, respectively. Figure
18 summarizes the results for the four tori, o/R =
0.15, 0.2, 0.25 and 0.35, showing a very good
agreement with the experimental results of

Widnall and Sullivan [14]. As before, the value

of V is used to characterize the ring in order to
remove any confusion about the definition of the
core and the vorticity distridbution. The
analytical results for a vortex torus with a non=
uniform vorticity distridution within the core,
the numerical results, and the experimental data
are In close agreement, differences can be
primarily attributed to the vorticity aistribution
within the core.

The form of the unstable torus with ¢/R «
0.35 at n = 6, is shown at time steps 1400-2000,
every 200 steps in Fig. 19 (it was found that n =
7 is also an unstadble mode for this torus), It is
interesting to note that the core deformation {s
different at different azimuthal locations and
that the inner and outer radii 8o not follow the
same pattern (Yule [32)). The figures indicates
that the inner and outer edges of the vorticity
core of the torus may ®move in anti-phase and that
variations at frequencies different than the
perturbation frequency arise at late times. Thus,
nigher order radial wmodes form as part of the
instabllity of vortex rings, in accordance with
the conclusion of the analytical theory [15]. To
quantify these frequencies, we study the energy
spectra of two tor{, In Figs. 20 and 21, the
spectra for ¢/R e 0.20 at t « 100 and for
o/R = 0.35 at t « 200 are shown. In the stable
modes, only the perturbdbation frequency is present
at very small amsplitude. In the unstable modes,
higher harmonics of the perturdation frequency,
which had zero amplitudes at t s 0O are excited at
substantial levels,
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Figure 18. Comparison betveen the experimental
data, x, of Widnall et al. [15) and of the
numericsl predictions, ¢ ,0f the unstadle modes of
a vortex torus. The plots {nclude data from Fig.
10.
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of vortex elements at these plots {s 810 (as at t
= 0), 822, 870 and 1032, respectively.
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o >e © Results of this section {ndicate that the
- - numerical simulation of vortex rings with finite
0 and deformable cores, as represented by a number
" ~ of vortex balls distributed within the ring core
-t and along 1its axis, can accurately be used to
d ® vl compute the wavenumber of the unstadble modes and
3 ’ 2 1 12 their growth, The deformation of the ring into a
', number of sectors aligned with the unstable
standing waves reseadbles strongly the experimental
¢ Figure 19. The evolution of the unstable mode of a results. The generation of small scales,
.« vortex torus with ¢/R o 0.35, perturbed at t = O accompanied by higher frequencies in the energy
K) with ¢/R = 0,02 and n « 6. The torus {s shown at spectrum, is due to vortex stretch and leads to
K time steps 1400-200, every 200. The total numder the well-known turbulence cascade. Thus, the
)
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azimuthal instability of vortex ring say be one
mechanism of transition to turbulence.

l‘.‘v
Q'n"'u,' PO LN

) ! NS
bt e tintn brbe



AR | R TCIN WKT WR T WPR T T WS

II1 AXISYMMETRIC SHEAR LAYER

The ultimate goal of this work is to study,
using three dimensional vortex simulation, the
evolution of a turbulent axisymmetric shear layer.
Analytical and experimental studies of this
configuration indicate that several types of
instability can arise and i{nfluence the
development of :tnhe flow field (e.g. Yule [32],
Crow and Champagne [33] and Michalke and Hermann
[34).) These instabilities include axisymmetric
modes, such as the rollup and pairing of ring-like
vortex eddies, and the jet-preferred mode, as well
as azimuthal modes such as the type which was
analyzed in the previous section, The interaction
between these modes, which have not been fully
understood, govern the flow, and in particular,
the velocity fluctuations, entrajnment, and mixing
between the fluids on both sides of the layer.
Chemical reactions, sound generation, combustion
instability can be strongly affected by these
interactions.

In this section, results for the evolution of
an axisymmetric shear layer, subject to an
axisymmetric perturbation, and using the three-
dimensional vortex scheme developed in the
previous section, are presented., The computations
are restricted to a periodically excited layer,
thus boundary conditions on both 8ides of the
computational domain, 1i.e, the wavelength, are
satisfied, This s accomplished by using image
vortices on both sides of the domain and computing
their field by summing over the induced velocity
of these images. The first image of each vortex
on both sides must be considered as a vortex ball
with a finite core radius, Beyond that, images
can be considered as vortex points with zero
cores. The effect of the latter can be arranged
as a summation over an infinite series for a two-
parameter function. Tnis function {s computed,
using a large number of terms {n the seriles, and
stored as a two-dimensional table of the two
parameters, During the computations, an
interpolation p»rocedure {is used to obtain the
value of the function at intermediate points.
Detajils will be published elsewhere.

Results are obtajined for an axisymmetric
snear layer with the following parameters: the
thickness of the vorticity layer I/D e 0.2,
wavelength of the perturbation A/D e 1,32, anq
amplitude of perturbation e¢/D = 0,04, where [ =« 2
0 and ¢ is the standard deviation of the second~
order Gaussian vorticity distribution within the
layer and D is the mean diameter of the layer,
The layer is discretized into 16 sections in the
streamwise di~ections and 5 sections in the cross-
stream direction, resulting in 80 vortex rings.
Each ring is represented by SC vortex balls along
its axis. The vorticity of each vortex ball was
obtained as before using 8/D e 0,0825. Figure 22
shows 3 comparison Dbetween the actual and
discretized vorticity distribution,

Figure 23 shows the location of the vortex
elements in p-z plane, where p {3 the radial
direction and z s the streamwise direction, and
their streamwise velocity relative to the mean
flow. In Fig. 24, vortex balls which were
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Figure 22. Actual and discretized vorticity within
the shear layer. Five vortex balls are used at
the indicated location.

nejghbors in the z~direction at time t e 0 are
connected using cubic spline curves to show the
stretch that the flow experiences while vorticity
is during the rollup phase, The vorticity field
and the material 1lines are plotted every 20
computational time. steps starting at t = O,
Although five layers of vortex elements were used
to discretize the vorticity in the radial
direction, the plots in Fig. 24 show only two
layers, the central layer and the next layer to
the outside. Plots of vortex elements locations
in the radial plane and the p-z plane show that
the elements remain on perfect circles while the
radii of these circles increase or decrease as the
vorticity layer rolls up.

Results in Fig. 23 indicate that the initial
perturbation causes the layer to rollup, forming a
large scale ring-like vortex eddy. As time
progresses, more of the vorticity becomes
concentrated around this eddy, and more
irrotational fluid from Dboth streams is entrained
into its core. Due to the self-induced velocity
of curved vortex 1lines, the eddy moves in the
streaswise direction. However, within the
duration of the computation, it maintains perfect
azimuthal symmetry. Figure 24 shows that the
central layer experiences the strongest stretch
within the core as it endures several turns due to
secondary instabilities, while the “braids", {.e,
the two sleeves connecting neighboring cores,
become thinner due to the strain field of the
cores.

Since the layer maintains &8 perfect
axisymmetric configuration during rollup, one can
make a preliminary conclusion that the growth of
the ax{symmetric modes during the early stages of
development suppresses the azimuthal instability
modes of the evolving vortex-ring eddy. This is
widely supported dy the analytlical linear theory
of Michalke and Hermann [35] and by the
experimental results of Vandsburger et al, [16],
Roquemore et al. ([17] and Namazian et al. [35].
The analytical study shows that the exponential
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growth rates of axisymmetiric modes are higher than
those of azimuthal modes. Moreover, in all the
reported experimental results, including those of
Yule [32] and Crow and Champagne [33], the layer
starts by rolling up into a perfect vortex ring.
At later stages, the rings become susceptible to
the azimuthal instability discussed in the
previous section and the flow loses the azimuthal
coherence.

However, this is only a preliminary
conclusion since, in the numerical sclution, the
flow started with a large axisymmetric

perturbation and zero azimuthal perturbation. The
amplitudes of the perturbations were selected to
model mos?t experimental situations, where
azimuthal perturbations are inhibited at the onset
of the layer by the nozzle. The higher growth
rate of the axisymmeiric mode could also be a
property of the linear range, as shown by the
analytical results. To support this result and to
study the effect of the azimuthal modes on the
growth of the axisymmetric modes, we are planning
to run the same case for different ratios of the
axisymmetric/azimuthal amplitudes. Another issue
to be 1investigated s at what stage does the
azimuthal modes start to grow and what effect does
the strain field generated during pairing have on
its development.

Apart from the displacement of the ring eddy
in the streamwise direction due to the curvature
of the vortex lines, this eddy resemdbles the eddy
that forms during the rollup of the planar shear
layer (Ghoniem et al. [3€]), Tnis similarity has
been observed pefore in the two-dimensional
caloulations of Davis and Moore [37]. As Fig. 24
indicates, the streamwise strain lield, associated
with the non-linea~ stages of rollup, pulls the
vortex eiements apar: so that the distance between
the neighboring centers exceeds h by a large
factor. In orcer to maintain the resolution at
later times, the vorticitly fiels must be
redistriduted between a different se:l of elements
which are organized so that they can accomodate
this strain fleld, as suggested dy Ghoniem et al.
736, in the 2D vortex elemert method.

The stability of this ring eddy, which has an
elliptical core, tc azimuthal perturdations while
it is moving in the strain field of {ts
neighboring eddies is of ceniral importance to the
later stages of development of the layer, A
numerical study of this problem is unde~way.

IV CONCLUSIONS

In this work, we have embarked on the task of
applying three dimensional vortex methods for the
numerical solution of the unsteady Navier-Stokes
equations at high Reynolds number. The 3D vortex
element method presented here combines the
advantages of the vortex filament method of
Leonard [8,11], and the vortex stick method of
Chorin [23,23] in maintaining the connectivity of
the vorticity fleld, thus satisfying the
solenoidality condition. It utilizes the results
of the convergence analysis of Beale and Majda
[19,20] in selecting the core of the vortex
elements. The scheme {s Lagrangian, is capable of
capturing the effect of plajn strain as well as
the vortex stretching along vortex lines by
changing the number and strength of the vortex
elements. It is readily extendable to flow flelds
with boundaries,

Results for the stability of a vortex ring
with a finite core, which forms as an axisymmetric
vorticity layer rolls up, show very good agreement
with the analytical and experimental results. The
results reveal: (1) the breakdown of the azimuthal
coherence of the ring due to the growth of radial
perturbations along and within the core; (2) the
evolution of streamwise vortlcity i{n the non-
linear stages of instability in the form of
elongated lobes of vorticity along wedges within
the expanding core; and (3) the development of an
energy cascade to small scales which accompanies
the stretch of vorticity during the non-linear
growth of {nstadbllity. Similar configurations
were captured in experimental studies on vortex
rings and later stages of turbulent jets.

The scheme was used to investigate the
initial stages of transition to turbulence {n an
excited axisymmetric mixing layer, and the results
showed good agreement with the recent qualitative
results of Vandsburger et al. [16] and Roguemore
et al., [17]. Quantitative study will be performed
to investigate the interaction between the
axisymmetric and the azimuthal instadility modes
and their effect on the development of the flow.

ACKNOWLEDGEMENT

This work 1is supported by the Alr Force
Office of Scientific Research Grant AFOSR B4-0356,
The National Science Foundatfon Grant CPE-840u81
and the Department of Energy Contract DE-ACOU-
B86AL16310. Computer support is provided by grants
from NSF and the John von Neumann Computer Center.




Yy '}%‘. -
g ’I’&'\""

LS

%
2 \
L

e
3

12.

14,

15.

REFERENCES

Van Dyke, M., An Album of Fluid Motion,
Parabolic, 176 p., 1982.

Lugt, H.J., Vortex Flow in Nature and
Technology. Wiley, 297 p., 1983.

Ho, C.-M., and Huerre, P., "Perturbed free
shear layers", Ann. Rev. Fluid Mech., 16, pp.
365-424 (1984).

Robert, R.A. and Roshko, A., "Effects of
periodic forcing on mixing in turbulent shear
layers and wakes, AIAA-85-0570.

Choniem, A.F. and Ng, K.X., "Numerical study

of a forced shear layer", Phys. Fluids, 1987,
in press, AIAA-B86-0370.

Chorin, A.J., "Numerical study of slightly
viscous flow,”™ J. Fluid Mech., 57, pp. 423-
442 (1973).

Saffman, P.G. and Merion, D.I., "Difficulties
with three-dimensional weak solutions for
inviscid incompressidble flow", Pnys. Fluids,
29, pp. 2373-2375 (1986).

Leonard, A., "Computing three dimensional
incompressible flows with vortex elements",
Ann. Rev. Fluid Mecn., 17, pp. 525-559
{79757,

Ashurst, W.T., "Numerical simulation of
turdbulent mixing layers via vortex dynamics,

Proc. the 21st Sym. Turbulent Shear flow, p.
402, Springer-Verlag, 1979.

Ghoniem, A.F, and Sethian, J.A. "Effect of
Reynolds numder on the structure of
recirculating flow", AIAA J. 1987, in press.
AIAA-85-0146,

Leonard, A., "Vortex methods for flow
simulation", J. Comput. Phys., 37, pp. 289-
335 (1980).

Saffman, P.G., and Baker, G.R., "Vortex
interactions”, Ann. Rev, Fluid Mech., 11, pp.
95-122 (1979).

Saffman, P.GC., "The velocity of viscous
vortex rings", Stud. Appl. Math., &9, pp.
371-380 (1970).

Widnall, S.E. and Sullivan, "On the stadbility
of vortex rings", Proc. R. Soc. Lond., A 332.
pp. 335-353 (1973).

Widnall, S.E., Bliss, D.B. and Tsaf, C.-Y.,
*"The instadility of short waves on a vortex
ring”, J. Fluid Mech., 60, pp. 35-MT (1974).

o«

S A O e OO ) SO PV T, -
LMK 200 S A’!'o'i‘t"‘e A ‘d';‘o‘;'t‘.,»'.'i'.’o'q‘t’o’i’;f"o"':.0':!0.s"'tf|'.,. s e

16.

18.

19.

20.

21,

22.

23.

2,

25.

26,

27.

28.

17

P

Vandsburger, H. Lewis, G., Seitzman, J.M.,
Allen, M.G., Bowman, C.T. and Hanson, R.X.,
*Flame~flow structure in an acoustically
driven jet flame", Western States Section/The
Comdbustion Institute, 1 Fall meeting,
aper 86-19.

Roquemore, W.M., Bradley, R.P., Jackson,
T.A., Kizirnis, S.W., Gross, L.P., Switzer,
G.L., Trump, D.D., Sarka, 8., Ballal, D.R.,
Lightsan, A.J., Yaney, P.P. and Chen, T.H.,
"Development of Laser diagnostics for
combustion research”, Central States

Section/The Combustion Institute, 1985 Spring

Meeting.

Batchelor, G.K., An_ Introduction to Fluid
Dynamics, Cambridge University Press, %15 p.
1967.

Beale, J.T. and Majda, A., "Vortex methods I:
Convergence in three dimensions”, Math.
Comput., 39, pp. 127 (1982).

Beale, J.T. and Majda, "Vortex sethods II:
Higher order accuracy in two and three

dimensions, Math. Comput., 39, pp. 29-52
(1982).

Truesdell, C., The Kinematics of Vorticity,
Indiana University Press, 232 p., 1954.

Anderson, C. and Greengard, C., "On vortex
methods", SIAM J. Numer. Anal., 22, pp. ¥13-
440 (1985).

Chorin, A.J., "Vortex models and boundary
layer instability SIAM J. Sci. State.
€11 1) PREE—

Comput., 1, pp. 1=21 (1980).

Chorin, A.J., "Estimsates of intermittency,
spectra and blow-up in developed turbdulence,

Commun. Pure Appl. Math., 34, pp. 853-866
1981).,

Chorin, A.J., "The evolution of a turbulent

vortex", Commun. Math Phys., 83, pp. 517-535
(1982).

Leonard, A., "Numerical
interacting, three dimensional vortex
filaments”, Proc. of the &th Int. Conf.

Numer. Meth. fluid _ Dyn., pp. 245-50,
Springer-Verlag (1975).

Ashurst, W.T. and Meidurg, E., "Three
dimensional shear layers via vortex
dynamics™, Sandia National Laboratory report,
SAND8S-8T77, 1985.

simulation of

Greengard, C., Three Dimensional Vortex
Methods, Ph.D. thesis, niversity o
Talifornia, Berkeley, 1984,

Y

.

Y




29.

30.

3.

32.

33.

34,

35.

36.

37.

Beale, J.T. and Majda, "Vortex methods I1I:
Higher order accurate vortex methods with

explicit velocity kernels”, J. Comput. Phys.,
58, pp. 183-208 (1985).

Widnall, S.E., "The structure and dynamics of
vortex filaments,” Ann. Rev. Fluid Mech., pp.
141-165 11976).

Widnall, S.E. and  Tsat, c.-Y., "The
instability of the thin vortex ring of

. constant vorticity", Philos. Trans. R. Soc.

Lond. Ser. K.,.287, pp. 273-305 {1977},

Yule, A.J., "Large-scale structures in the
mixing layer of a round jet", J. Fluld Mech.,
Qg. pp. 413-432 (1978).

Crow, S.C. and Champagne, F.H., "Orderly
structure in jet turbulence”, J. Fluid Mech.,
48, pp. 547-591 (1971),

Michalke, A. and Hermann, G., "On the
inviscid instability of a circular jet with
external flow", J. Fluid Mech., 114, pp. 343-
359 (1982).

Namazian, M., Kelly, J. Schaefer, R.,
Johnston, S, and Long, M., "Flow and mixing
structures in bluff-pody stabilized gas
flames"”, 1986 International Gas Research
Conference, Toronto, Canada.

Ghoniem, A.F., He{darinejad, G. and Krishnan,
A., "Vortex element simulation of the rollup
and mixing in a thermally-stratified shear
layer", submitted for publication, J. Comput.

Pnys., 1987.

Davis, R.W. an¢ Moore, E.F., "A numerical
study o7 vortex merging in mixing layers®,
Snys. Fluids, 28, pp. 1625-1635 (1985),

LY

G Ny e b Ty SV T 1R
NS RS A T “'(“‘l"ib ‘:q 'i"’.v:l"' 0

S A

Mian, .

06T y
St e ra




P & e e

LAY 3,
. X 4‘. ;..lc.. .0‘ KV 2 ) “v‘ s
'\"'\. {' !=
n h "".‘
I




